{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Categories.Limits.BinProduct.Adjoint where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma as Ty hiding (_×_)
open import Cubical.Categories.Category
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Constructions.BinProduct.More
import Cubical.Categories.Constructions.BinProduct.Redundant.Base as R
open import Cubical.Categories.Functors.HomFunctor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Functors.Constant
open import Cubical.Categories.Functor
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.FunctorComprehension
open import Cubical.Categories.Isomorphism
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Adjoint.UniversalElements
open import Cubical.Categories.Bifunctor as R hiding (Fst; Snd)
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Yoneda
private
variable
ℓ ℓ' : Level
_⊗_ = R._×C_
module _ (C : Category ℓ ℓ') where
BinProduct = RightAdjointAt (Δ C)
BinProducts = RightAdjoint (Δ C)
private
BadBinProductProf : Profunctor (C R.×C C) C ℓ'
BadBinProductProf =
(precomposeF _ (Δ C ^opF) ∘F YO) ∘F R.RedundantToProd C C
AlsoBadBinProductProf : Profunctor (C ⊗ C) C ℓ'
AlsoBadBinProductProf =
R.rec C C (ParFunctorToBifunctor (PshProd' ∘F (YO ×F YO)))