{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Categories.Presheaf.Constructions where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Constructions.BinProduct.More
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Instances.Terminal.Base
open import Cubical.Categories.Displayed.Presheaf
private
variable
ℓ ℓ' ℓA ℓB : Level
module _ {C : Category ℓ ℓ'} {ℓA ℓB : Level} where
PshProd' : Functor
(PresheafCategory C ℓA ×C PresheafCategory C ℓB)
(PresheafCategory C (ℓ-max ℓA ℓB))
PshProd' = (postcomposeF _ ×Sets ∘F ,F-functor)
PshProd : Bifunctor (PresheafCategory C ℓA) (PresheafCategory C ℓB)
(PresheafCategory C (ℓ-max ℓA ℓB))
PshProd = ParFunctorToBifunctor PshProd'
open Functor
open Functorᴰ
module _ (P : Presheaf C ℓA) (Pᴰ : Presheafᴰ P (Unitᴰ _) ℓB) where
private
module C = Category C
module P = PresheafNotation P
module Pᴰ = PresheafᴰNotation Pᴰ
ΣPsh : Presheaf C (ℓ-max ℓA ℓB)
ΣPsh .F-ob x .fst = Σ[ p ∈ P.p[ x ] ] ⟨ Pᴰ .F-obᴰ _ p ⟩
ΣPsh .F-ob x .snd = isSetΣ P.isSetPsh (λ p → Pᴰ .F-obᴰ _ _ .snd)
ΣPsh .F-hom f (p , pᴰ) = _ , Pᴰ .F-homᴰ {f = f} _ p pᴰ
ΣPsh .F-id = funExt λ (p , pᴰ) →
ΣPathP (_ , λ i → Pᴰ .F-idᴰ i p pᴰ )
ΣPsh .F-seq f g = funExt λ (p , pᴰ) →
ΣPathP (_ , λ i → Pᴰ .F-seqᴰ {f = f}{g = g} _ _ i p pᴰ)
Comprehension : (Γ : C.ob) → P.p[ Γ ] → Presheaf C (ℓ-max ℓ' ℓB)
Comprehension Γ p .F-ob Δ .fst =
Σ[ γ ∈ C [ Δ , Γ ] ] Pᴰ.p[ γ P.⋆ p ][ _ ]
Comprehension Γ p .F-ob Δ .snd = isSetΣ C.isSetHom (λ _ → Pᴰ.isSetPshᴰ)
Comprehension Γ p .F-hom δ (γ , pᴰ) =
(δ C.⋆ γ) , Pᴰ.reind (sym $ P.⋆Assoc _ _ _)
(_ Pᴰ.⋆ᴰ pᴰ)
Comprehension Γ p .F-id = funExt (λ (γ , q) → ΣPathP ((C.⋆IdL _) ,
(Pᴰ.rectify $ Pᴰ.≡out $
sym (Pᴰ.reind-filler _ _)
∙ Pᴰ.⋆IdL _)))
Comprehension Γ p .F-seq f g = funExt λ (γ , q) → ΣPathP (C.⋆Assoc _ _ _
, (Pᴰ.rectify $ Pᴰ.≡out $
sym (Pᴰ.reind-filler _ _)
∙ Pᴰ.⋆Assoc _ _ _
∙ Pᴰ.⟨ refl ⟩⋆⟨ Pᴰ.reind-filler _ _ ⟩
∙ Pᴰ.reind-filler _ _))
private
open Category
open Bifunctor
open NatTrans
module _ (P P' : Presheaf C ℓA)(Q Q' : Presheaf C ℓB)
(α : PresheafCategory C ℓA [ P , P' ])
(β : PresheafCategory C ℓB [ Q , Q' ])
c where
_ : PshProd .Bif-homL α Q .N-ob c ≡ λ (p , q) → α .N-ob c p , q
_ = refl
_ : PshProd .Bif-homR P β .N-ob c ≡ λ (p , q) → p , β .N-ob c q
_ = refl