{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Categories.Displayed.Constructions.Reindex.Limits where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Functor
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Constructions.Reindex.Base as Base
hiding (π; reindex)
open import Cubical.Categories.Displayed.Constructions.Reindex.Properties
open import Cubical.Categories.Displayed.Limits.Cartesian
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Presheaf
private
variable
ℓB ℓB' ℓBᴰ ℓBᴰ' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
open Category
open Functor
open UniversalElement
open UniversalElementᴰ
open UniversalElementⱽ
open CartesianLift
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
{F : Functor C D}
{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
where
open isIsoOver
private
module C = Category C
module D = Category D
F*Dᴰ = Base.reindex Dᴰ F
module R = HomᴰReasoning Dᴰ
module F*Dᴰ = Categoryᴰ F*Dᴰ
module Dᴰ = Categoryᴰ Dᴰ
preservesTerminalⱽ :
∀ c → Terminalⱽ Dᴰ (F ⟅ c ⟆)
→ Terminalⱽ (Base.reindex Dᴰ F) c
preservesTerminalⱽ c 𝟙ᴰ .vertexⱽ = 𝟙ᴰ .vertexⱽ
preservesTerminalⱽ c 𝟙ᴰ .elementⱽ = 𝟙ᴰ .elementⱽ
preservesTerminalⱽ c 𝟙ᴰ .universalⱽ = 𝟙ᴰ .universalⱽ
TerminalsⱽReindex : Terminalsⱽ Dᴰ →
Terminalsⱽ (Base.reindex Dᴰ F)
TerminalsⱽReindex vtms c = preservesTerminalⱽ c (vtms (F ⟅ c ⟆))
module _ {c : C .ob} {Fcᴰ Fcᴰ' : Dᴰ.ob[ F ⟅ c ⟆ ]}
(vbp : BinProductⱽ Dᴰ (Fcᴰ , Fcᴰ')) where
private
module Fcᴰ∧Fcᴰ' = BinProductⱽNotation _ vbp
preservesBinProductⱽ : BinProductⱽ (Base.reindex Dᴰ F) (Fcᴰ , Fcᴰ')
preservesBinProductⱽ .vertexⱽ = vbp .vertexⱽ
preservesBinProductⱽ .elementⱽ .fst =
R.reind (sym $ F .F-id) $ vbp .elementⱽ .fst
preservesBinProductⱽ .elementⱽ .snd =
R.reind (sym $ F .F-id) $ vbp .elementⱽ .snd
preservesBinProductⱽ .universalⱽ .fst (fᴰ₁ , fᴰ₂) = fᴰ₁ Fcᴰ∧Fcᴰ'.,ⱽ fᴰ₂
preservesBinProductⱽ .universalⱽ .snd .fst (fᴰ₁ , fᴰ₂) = ΣPathP
( (R.rectify $ R.≡out $
(sym $ R.reind-filler _ _)
∙ (sym $ R.reind-filler _ _)
∙ R.⟨ refl ⟩⋆⟨ sym $ R.reind-filler _ _ ⟩
∙ R.reind-filler _ _
∙ Fcᴰ∧Fcᴰ'.∫×βⱽ₁)
, (R.rectify $ R.≡out $
(sym $ R.reind-filler _ _)
∙ (sym $ R.reind-filler _ _)
∙ R.⟨ refl ⟩⋆⟨ sym $ R.reind-filler _ _ ⟩
∙ R.reind-filler _ _
∙ Fcᴰ∧Fcᴰ'.∫×βⱽ₂))
preservesBinProductⱽ .universalⱽ .snd .snd fᴰ = R.rectify $ R.≡out $
Fcᴰ∧Fcᴰ'.,ⱽ≡
(sym (R.reind-filler _ _)
∙ sym (R.reind-filler _ _)
∙ R.⟨ refl ⟩⋆⟨ sym $ R.reind-filler _ _ ⟩
∙ R.reind-filler _ _)
(sym (R.reind-filler _ _)
∙ sym (R.reind-filler _ _)
∙ R.⟨ refl ⟩⋆⟨ sym $ R.reind-filler _ _ ⟩
∙ R.reind-filler _ _)
BinProductsⱽReindex : BinProductsⱽ Dᴰ →
BinProductsⱽ (Base.reindex Dᴰ F)
BinProductsⱽReindex vps Fcᴰ Fcᴰ×Fcᴰ' =
preservesBinProductⱽ (vps _ _)
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
(F : Functor C D)
(Dᴰ : CartesianCategoryⱽ D ℓDᴰ ℓDᴰ')
where
private
module Dᴰ = CartesianCategoryⱽ Dᴰ
open CartesianCategoryⱽ
reindex : CartesianCategoryⱽ C ℓDᴰ ℓDᴰ'
reindex .Cᴰ = Base.reindex Dᴰ.Cᴰ F
reindex .termⱽ = TerminalsⱽReindex Dᴰ.termⱽ
reindex .bpⱽ = BinProductsⱽReindex Dᴰ.bpⱽ
reindex .cartesianLifts = isFibrationReindex _ _ Dᴰ.cartesianLifts