{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.Constructions.Reindex.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Functor
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Constructions.Reindex.Base hiding (π)
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Presheaf
private
variable
ℓB ℓB' ℓBᴰ ℓBᴰ' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
open Category
open Functor
open CartesianLift
module _
{C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
(Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ') (F : Functor C D)
where
private
module C = Category C
module D = Category D
F*Dᴰ = reindex Dᴰ F
module R = HomᴰReasoning Dᴰ
module F*Dᴰ = Categoryᴰ F*Dᴰ
module Dᴰ = Categoryᴰ Dᴰ
hasPropHomsReindex : hasPropHoms Dᴰ → hasPropHoms (reindex Dᴰ F)
hasPropHomsReindex = λ z {c} {c'} f → z (F-hom F f)
module _
{c : C .ob}{c' : C .ob}
{dᴰ' : Dᴰ.ob[ F ⟅ c' ⟆ ]}{f : C [ c , c' ]}
where
reflectsCartesianLifts
: CartesianLift Dᴰ dᴰ' (F ⟪ f ⟫)
→ CartesianLift F*Dᴰ dᴰ' f
reflectsCartesianLifts F⟪f⟫-lift .f*yᴰ = F⟪f⟫-lift .f*yᴰ
reflectsCartesianLifts F⟪f⟫-lift .π = F⟪f⟫-lift .π
reflectsCartesianLifts F⟪f⟫-lift .isCartesian .fst gfᴰ =
F⟪f⟫-lift .isCartesian .fst (R.reind (F .F-seq _ _) gfᴰ)
reflectsCartesianLifts F⟪f⟫-lift .isCartesian .snd .fst gfᴰ =
R.rectify $ R.≡out $
(sym $ R.reind-filler _ _)
∙ (R.≡in $ F⟪f⟫-lift .isCartesian .snd .fst _)
∙ (sym $ R.reind-filler _ _)
reflectsCartesianLifts F⟪f⟫-lift .isCartesian .snd .snd gᴰ =
R.rectify $ R.≡out $
((R.≡in $ congP (λ _ → F⟪f⟫-lift .isCartesian .fst)
$ transportTransport⁻ (λ i → Dᴰ.Hom[ F .F-seq _ _ i ][ _ , _ ])
(gᴰ Dᴰ.⋆ᴰ F⟪f⟫-lift .π))
∙ (R.≡in $ F⟪f⟫-lift .isCartesian .snd .snd gᴰ))
isFibrationReindex : isFibration Dᴰ → isFibration (reindex Dᴰ F)
isFibrationReindex isFibDᴰ _ _ = reflectsCartesianLifts (isFibDᴰ _ _)