{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Categories.Displayed.Instances.Presheaf.Limits where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Functor
open import Cubical.Categories.Functors.Constant
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.BinProduct
open import Cubical.Categories.Presheaf.CCC
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Displayed.Limits.Cartesian
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Presheaf hiding (PRESHEAFᴰ)
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Instances.Presheaf.Base
open import Cubical.Categories.Displayed.Instances.Presheaf.Properties
open Category
open Functor
open NatTrans
open Contravariant
open Categoryᴰ
open UniversalElement
open UniversalElementⱽ
open isIsoOver
private
variable ℓC ℓC' ℓD ℓD' ℓE ℓE' : Level
module _ (C : Category ℓC ℓC') (ℓS ℓSᴰ : Level) where
private
module 𝓟ᴰ = Categoryᴰ (PRESHEAFᴰ C ℓS ℓSᴰ)
opaque
TerminalsⱽPRESHEAFᴰ : Terminalsⱽ (PRESHEAFᴰ C ℓS ℓSᴰ)
TerminalsⱽPRESHEAFᴰ P .vertexⱽ = ⊤𝓟 _ _ .vertex
TerminalsⱽPRESHEAFᴰ P .elementⱽ = tt
TerminalsⱽPRESHEAFᴰ P .universalⱽ .fst x =
natTrans (λ _ _ → tt*) (λ _ → refl)
TerminalsⱽPRESHEAFᴰ P .universalⱽ .snd .fst _ = refl
TerminalsⱽPRESHEAFᴰ P .universalⱽ .snd .snd a =
makeNatTransPathP refl refl refl
BinProductsⱽPRESHEAFᴰ : BinProductsⱽ (PRESHEAFᴰ C ℓS ℓSᴰ)
BinProductsⱽPRESHEAFᴰ _ (Pᴰ , Pᴰ') .vertexⱽ = ×𝓟 _ _ (Pᴰ , Pᴰ') .vertex
BinProductsⱽPRESHEAFᴰ _ (Pᴰ , Pᴰ') .elementⱽ =
(seqTrans (×𝓟 _ _ (Pᴰ , Pᴰ') .element .fst) (idTransᴰ _ _ _))
, (seqTrans (×𝓟 _ _ (Pᴰ , Pᴰ') .element .snd) (idTransᴰ _ _ _))
BinProductsⱽPRESHEAFᴰ _ (Pᴰ , Pᴰ') .universalⱽ .fst (id∘αᴰ , id∘αᴰ') =
natTrans
(λ (x , x') q → ((id∘αᴰ ⟦ _ ⟧) q) , (id∘αᴰ' ⟦ _ ⟧) q)
λ (f , f-comm) → funExt λ q →
ΣPathP (funExt⁻ (id∘αᴰ .N-hom _) _ , funExt⁻ (id∘αᴰ' .N-hom _) _)
BinProductsⱽPRESHEAFᴰ _ (Pᴰ , Pᴰ') .universalⱽ .snd .fst (id∘αᴰ , id∘αᴰ') =
ΣPathP
( makeNatTransPath (sym (transport-filler _ _))
, makeNatTransPath (sym (transport-filler _ _)))
BinProductsⱽPRESHEAFᴰ _ (Pᴰ , Pᴰ') .universalⱽ {y = Q}{yᴰ = Qᴾ}{f = α}
.snd .snd αᴰ = makeNatTransPath (funExt λ q → funExt λ q' →
ΣPathP
( fromPathP
(λ i → αᴰ .N-ob
(transport-filler (λ j → Σ (ob C) (λ c → fst (F-ob Q c))) q (~ i))
(transport-filler
(λ j →
Qᴾ .F-ob (transp (λ j₁ → Σ (ob C) (λ c → fst (F-ob Q c))) (~ j) q)
.fst)
q' (~ i)) .fst)
, fromPathP
(λ i → αᴰ .N-ob
(transport-filler (λ j → Σ (ob C) (λ c → fst (F-ob Q c))) q (~ i))
(transport-filler
(λ j →
Qᴾ .F-ob
(transp (λ j₁ → Σ (ob C) (λ c → fst (F-ob Q c))) (~ j) q) .fst)
q' (~ i)) .snd)))
𝓟-CCⱽ : CartesianCategoryⱽ (PresheafCategory C ℓS) _ _
𝓟-CCⱽ .CartesianCategoryⱽ.Cᴰ = (PRESHEAFᴰ C ℓS ℓSᴰ)
𝓟-CCⱽ .CartesianCategoryⱽ.termⱽ = TerminalsⱽPRESHEAFᴰ
𝓟-CCⱽ .CartesianCategoryⱽ.bpⱽ = BinProductsⱽPRESHEAFᴰ
𝓟-CCⱽ .CartesianCategoryⱽ.cartesianLifts = isFibrationPRESHEAFᴰ _ _ _