{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.Instances.Functor.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Constructions.BinProduct
import Cubical.Categories.Constructions.TotalCategory as ∫
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.NaturalTransformation
open import Cubical.Categories.Displayed.Instances.Functor.Base
private
variable
ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
(Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')(Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ') where
open Functor
open Functorᴰ
open NatTrans
open NatTransᴰ
∫F-Functor : Functor (∫.∫C (FUNCTORᴰ Cᴰ Dᴰ)) (FUNCTOR (∫.∫C Cᴰ) (∫.∫C Dᴰ))
∫F-Functor .F-ob (F , Fᴰ) = ∫.∫F Fᴰ
∫F-Functor .F-hom (α , αᴰ) .N-ob (x , xᴰ) = (α .N-ob x , αᴰ .N-obᴰ xᴰ)
∫F-Functor .F-hom (α , αᴰ) .NatTrans.N-hom (f , fᴰ) =
ΣPathP (α .N-hom f , αᴰ .N-homᴰ fᴰ)
∫F-Functor .F-id = makeNatTransPath refl
∫F-Functor .F-seq f g = makeNatTransPath refl