{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.HLevels.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Reasoning as Reasoning
private
variable
ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
open Categoryᴰ
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
(isPropHom : hasPropHoms Cᴰ) where
open Category
private
module Cᴰ = Categoryᴰ Cᴰ
module RCᴰ = Reasoning Cᴰ
propHomsFiller :
∀ {x y}{xᴰ yᴰ}
{f g : C [ x , y ]}
(fᴰ : Cᴰ.Hom[ f ][ xᴰ , yᴰ ])
(p : f ≡ g)
gᴰ
→ fᴰ Cᴰ.≡[ p ] gᴰ
propHomsFiller fᴰ p gᴰ = toPathP (isPropHom _ _ _ _ _)