{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.Constructions.Weaken.Monoidal where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Monoidal.Base
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.NaturalTransformation
open import Cubical.Categories.Displayed.NaturalIsomorphism
open import Cubical.Categories.Displayed.Monoidal.Base
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
private
variable
ℓB ℓB' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
module _ (M : MonoidalCategory ℓC ℓC') (N : MonoidalCategory ℓD ℓD') where
open Category
open MonoidalCategoryᴰ
open Functorᴰ
open Functor
open NatTransᴰ
open NatIsoᴰ
open isIsoᴰ
open NatTrans
open NatIso
open isIso
private
module M = MonoidalCategory M
module N = MonoidalCategory N
weaken : MonoidalCategoryᴰ M ℓD ℓD'
weaken .Cᴰ = Wk.weaken M.C N.C
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-obᴰ = N.─⊗─ .F-ob
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-homᴰ = N.─⊗─ .F-hom
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-idᴰ = N.─⊗─ .F-id
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-seqᴰ = N.─⊗─ .F-seq
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.unitᴰ = N.unit
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .transᴰ .N-obᴰ = N.α .trans .N-ob
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .transᴰ .N-homᴰ = N.α .trans .N-hom
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .invᴰ = N.α .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .secᴰ = N.α .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .retᴰ = N.α .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .transᴰ .N-obᴰ = N-ob (N.η .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .transᴰ .N-homᴰ = N-hom (N.η .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .invᴰ = N.η .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .secᴰ = N.η .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .retᴰ = N.η .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .transᴰ .N-obᴰ = N-ob (N.ρ .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .transᴰ .N-homᴰ = N-hom (N.ρ .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .invᴰ = N.ρ .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .secᴰ = N.ρ .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .retᴰ = N.ρ .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.pentagonᴰ = N.pentagon
weaken .monstrᴰ .MonoidalStrᴰ.triangleᴰ = N.triangle