{-# OPTIONS --safe #-}
module Cubical.Categories.Displayed.Constructions.IsoFiber.Monoidal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Monoidal.Base
open import Cubical.Categories.Monoidal.Functor
open import Cubical.Categories.Constructions.BinProduct.Monoidal
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Monoidal.Base
open import Cubical.Categories.Displayed.Instances.Arrow.Base hiding (Iso)
open import Cubical.Categories.Displayed.Instances.Arrow.Properties
open import Cubical.Categories.Displayed.Instances.Arrow.Monoidal
open import Cubical.Categories.Displayed.Constructions.PropertyOver
open import Cubical.Categories.Displayed.Constructions.Reindex.Monoidal
open import Cubical.Categories.Displayed.Constructions.TotalCategory.Monoidal
open import Cubical.Categories.Bifunctor hiding (Fst; Snd)
import Cubical.Categories.Displayed.Constructions.IsoFiber.Base
as |IsoFiber|
private
variable
ℓC ℓC' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓS ℓR : Level
module _ {M : MonoidalCategory ℓC ℓC'} {N : MonoidalCategory ℓD ℓD'}
(G : StrongMonoidalFunctor M N)
where
IsoFiber : MonoidalCategoryᴰ N (ℓ-max ℓC ℓD') (ℓ-max ℓC' ℓD')
IsoFiber = ∫Mᴰsr N M
(reindex (Iso N) (IdStr ×F G)
(hasPropHomsIso (MonoidalCategory.C N))
(isIsoFibrationIso (MonoidalCategory.C N)))
private
test-defn :
MonoidalCategoryᴰ.Cᴰ IsoFiber
≡ |IsoFiber|.IsoFiber (StrongMonoidalFunctor.F G)
test-defn = refl