{-# OPTIONS --safe #-} module Cubical.Categories.Displayed.Constructions.Graph.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.Structure open import Cubical.Categories.Category.Base open import Cubical.Categories.Functor.Base open import Cubical.Categories.Bifunctor open import Cubical.Categories.Profunctor.Relator open import Cubical.Categories.Constructions.BinProduct as BP open import Cubical.Categories.Constructions.TotalCategory as TotalCat open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Displayed.Base open import Cubical.Categories.Displayed.Fibration.TwoSided open import Cubical.Categories.Displayed.HLevels open import Cubical.Categories.Displayed.Functor open import Cubical.Categories.Displayed.Constructions.Graph.Base private variable ℓC ℓC' ℓD ℓD' ℓS : Level open Category open Functor open isTwoSidedWeakFibration open WeakLeftCartesianLift open WeakRightOpCartesianLift module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (R : C o-[ ℓS ]-* D) where open Bifunctor private TabR = Graph R isTwoSidedWeakFibrationGraph : isTwoSidedWeakFibration {C = C}{D = D} (Graph R) isTwoSidedWeakFibrationGraph .leftLifts p f .f*p = f ⋆l⟨ R ⟩ p isTwoSidedWeakFibrationGraph .leftLifts p f .π = sym (relSeqRId R _) isTwoSidedWeakFibrationGraph .leftLifts p f .wkUniversal pf = sym (profAssocL R _ _ _) ∙ pf isTwoSidedWeakFibrationGraph .rightLifts p f .pf* = p ⋆r⟨ R ⟩ f isTwoSidedWeakFibrationGraph .rightLifts p f .σ = relSeqLId R _ isTwoSidedWeakFibrationGraph .rightLifts p f .wkUniversal pf = pf ∙ profAssocR R _ _ _