Problem Set 6: Adjunctions and Algebras

Released: November 13, 2025 Due: November 25, 2025, 11:59pm

Submit your solutions to this homework on Canvas alone or in a group of 2. Your solutions must be submitted in pdf produced using LaTeX.

Definition 1 (Algebraic Theory of Immutable State). The algebraic theory of an immutable boolean state T_{imm} consists of one binary operation

• "read": r(x,y)

and two laws

- Constancy law r(x,x) = x
- Diagonal law $r(r(x_{00}, x_{01}), r(x_{10}, x_{11})) = r(x_{00}, x_{11})$

Definition 2 (Algebraic Theory of Mutable State). The algebraic theory of mutable boolean state T_{mut} consists of two operations

- binary operation "read": r(x,y)
- ullet two unary operations "set 0" $s_0(x)$ and "set 1" $s_1(x)$

Subject to the following laws

- Diagonal law: $r(r(x_{00}, x_{01}), r(x_{10}, x_{11})) = r(x_{00}, x_{11})$
- Read-set: $r(s_0(x), s_1(x)) = x$
- Set-read: $s_i(r(x_0, x_1)) = s_i(x_i)$
- Set-set: $s_i(s_j(x)) = s_j(x)$

Definition 3 (Free Algebra). A free T-algebra on a set A for an algebraic theory T consists of the following data:

- An algebra FA
- $A \ function \ \eta : A \to UFA$
- Such that for every algebra Y pre-composition with η is a bijection T-Alg(FA, Y) \rightarrow Set(A, UB) from homomorphisms out of the free algebra on A to functions into the underlying set of the algebra B

Problem 1 Relating properties of adjoint functors and their (co)-units

Prove Lemma 4.5.13 from Riehl's *Category Theory in Context*, page 140. Explain precisely how the case for unit follows from the case for co-unit (or vice-versa) by duality.

.

Problem 2 Normal forms for computational algebras

- 1. Let A be a set. Define a T_{imm} -algebra structure whose underlying set is A^2 and show that it is the free T_{imm} -algebra on A.
- 2. Show that for any $T_{\rm mut}$ -algebra, the read operation satisfies the axioms of a $T_{\rm imm}$ -algebra.
- 3. Let A be a set. Define a T_{mut} -algebra structure whose underlying set is $(2 \times A)^2$ and show that it is the free T_{mut} -algebra on A.

.