
Problem Set 3: Functoriality and Naturality

Released: September 25, 2025
Due: October 9, 2025, 11:59pm

Submit your solutions to this homework on Canvas alone or in a group of 2. Your
solutions must be submitted in pdf produced using LaTeX.

Problem 1 Bifunctors

Functors provide a notion of single-argument morphism between categories. A bi-
functor from C and D to E is a notion of “functor of two arguments”. In this problem
we will show that various ways of defining a bifunctor are equivalent.

• A jointly functorial bifunctor F : C,D → E consists of

1. An action on objects F0 : C0 ×D0 → E0
2. A joint action on morphisms, which for every A,A′ ∈ C0 and B,B′ ∈ D0

gives a function F1 : C1(A,A′)×D1(B,B′) → E1(F0(A,B), F0(A
′, B′))

3. satisfying joint functoriality laws that F1(idA, idB) = idF0(A,B) and F1(f ◦
f ′, g ◦ g′) = F1(f, g) ◦ F1(f

′, g′)

• A separately functorial bifunctor F : C,D → E consists of

1. An action on objects F0 : C0 ×D0 → E0
2. A left action on morphisms, which for every A,A′ ∈ C0 and B ∈ D0 gives

a function Fl : C1(A,A′) → E1(F0(A,B), F0(A
′, B))

3. A right action on morhpisms, which for every A ∈ C0 and B,B′ ∈ D0 gives
a function Fr : D1(B,B′) → E1(F0(A,B), F0(A,B

′))

4. Satisfying left functoriality laws Fl(idA) = idF0(A,B) and Fl(f ◦f ′) = Fl(f)◦
Fl(f

′)

5. Satisfying right functoriality laws Fr(idB) = idF0(A,B) and Fr(g ◦ g′) =
Fr(g) ◦ Fr(g

′)

6. Satisfying a commutative law Fl(f) ◦ Fr(g) = Fr(g) ◦ Fl(f).

1. Construct a bijection between separately functorial and jointly functorial bi-
functors C,D → E .
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2. Construct a bijection between jointly functorial bifunctors C,D → E and func-
tors C × D → E .

3. Construct a bijection between separately functorial bifunctors C,D → E and
functors C → ED, where ED is the category of functors from D to E with natural
transformations as morphisms.

. . . . . . . . .

Problem 2 Product Functor

Let C be a category such that for every pair of objects A,B ∈ C, we have a specified
product (A×B, π1 : C(A×B,A), π2 : C(A×B,B)).

1. Show that taking binary products defines a functor × : (C × C) → C. That
is, show that if we define × on objects such that a × b is a product of a and b
(with projections π1 : a × b → a and π2 : a × b → b), then you can extend the
definition to a functorial action on morphisms.

2. Let Π1 : C2 → C be the functor that projects out the first component of C2.
Prove that π1 defines a natural transformation from × to Π1. Symmetrically,
π2 is also natural.

. . . . . . . . .

Problem 3 Theorems for Free, Naturally

The naturality property of a natural transformation is such a strong condition that
sometimes we can characterize all natural transformations between two fixed functors,
and in many examples there are only finitely many.

This has direct applications to programming. The reason is that in a pure poly-
morphic functional language, given type constructors F and G that are functorial,
all functions F (X) → G(X) that are polymorphic in X denote natural transforma-
tions! Phil Wadler, building on John Reynold’s theory of parametricity called these
“theorems for free”: just from the type of a polymorphic function, the naturality
property gives you properties that hold for every function of that type (Reynolds
[1983], Wadler [1989]).

1. Define a natural transformation from idSet to idSet and prove that it is the only
such natural transformation.

2. Let × : Set × Set → Set be the functor you deifned in the previous problem
and let ×′ : Set × Set → Set be the functor with the arguments swapped
A×′ B = B × A.

Define a natural transformation from × to ×′ and show that it is the only such
natural transformation.
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3. Recall the category of pointed sets Set∗ is defined as follows:

• Objects are pairs of a set X and a “basepoint” x0 ∈ X.

• A morphism from (X, x0) to (Y, y0) is a base-point-preserving function, i.e.,
a function f : X → Y such that f(x0) = y0. Identity and composition are
simply identity and composition of functions.

Define two different natural transformations from idSet∗ to idSet∗ and prove that
these are the only two such natural transformations.

. . . . . . . . .

EECS 598: Category Theory PS 1



REFERENCES 4

References

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World
Computer Congress, Paris, France, September 19-23, 1983, pages 513–523. North-
Holland/IFIP, 1983.

Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth
international conference on Functional programming languages and computer archi-
tecture, FPCA 1989, London, UK, September 11-13, 1989, pages 347–359. ACM,
1989. doi: 10.1145/99370.99404. URL https://doi.org/10.1145/99370.99404.

EECS 598: Category Theory PS 1


