Problem Set 3: Functoriality and Naturality

Released: September 25, 2025
Due: October 9, 2025, 11:59pm

Submit your solutions to this homework on Canvas alone or in a group of 2. Your
solutions must be submitted in pdf produced using LaTeX.

Problem 1 Bifunctors

Functors provide a notion of single-argument morphism between categories. A bi-
functor from C and D to £ is a notion of “functor of two arguments”. In this problem
we will show that various ways of defining a bifunctor are equivalent.

o A jointly functorial bifunctor F': C,D — £ consists of

1.
2.

3.

An action on objects Fy : Co X Dy — &

A joint action on morphisms, which for every A, A" € Cy and B, B’ € D,
giVGS a function F} : Cl(A, A/) X Dl(B, B,) — gl(Fo(A, B), F(](A/, B,))

satisfying joint functoriality laws that Fi(id4,idp) = idgya,p) and Fi(f o
f’,gog’) = Fl(fag) OFl(fl7g/)

e A separately functorial bifunctor F': C,D — & consists of

1.
2.

6.

An action on objects Fy : Co X Dy — &

A left action on morphisms, which for every A, A" € Cy and B € Dy gives
a function Fj : C1(A, A’) — &1 (Fo(A, B), Fy(A', B))

A right action on morhpisms, which for every A € Cy and B, B’ € D, gives
a function F, : Dy(B, B') — & (Fy(A, B), Fo(A, B))

Satisfying left functoriality laws Fj(id4) = idgya,5) and Fi(fo f') = Fi(f)o
Fi(f")

Satisfying right functoriality laws F,.(idp) = idg,a,p) and F.(go ¢') =
F.(9) o Fi(g)

Satisfying a commutative law Fj(f) o F.(g) = F,(g) o Fi(f).

1. Construct a bijection between separately functorial and jointly functorial bi-
functors C,D — €£.



2. Construct a bijection between jointly functorial bifunctors C,D — £ and func-
tors C x D — €.

3. Construct a bijection between separately functorial bifunctors C,D — £ and
functors C — EP, where EP is the category of functors from D to £ with natural
transformations as morphisms.

Problem 2 Product Functor

Let C be a category such that for every pair of objects A, B € C, we have a specified
product (A x B,m : C(A x B, A),m : C(A x B, B)).

1. Show that taking binary products defines a functor x : (C x C) — C. That
is, show that if we define x on objects such that a x b is a product of a and b
(with projections 71 : @ X b — a and 73 : a X b — b), then you can extend the
definition to a functorial action on morphisms.

2. Let II; : C* — C be the functor that projects out the first component of C%.
Prove that 7 defines a natural transformation from x to II;. Symmetrically,
79 is also natural.

Problem 3 Theorems for Free, Naturally

The naturality property of a natural transformation is such a strong condition that
sometimes we can characterize all natural transformations between two fixed functors,
and in many examples there are only finitely many.

This has direct applications to programming. The reason is that in a pure poly-
morphic functional language, given type constructors F' and G that are functorial,
all functions F'(X) — G(X) that are polymorphic in X denote natural transforma-
tions! Phil Wadler, building on John Reynold’s theory of parametricity called these
“theorems for free”: just from the type of a polymorphic function, the naturality
property gives you properties that hold for every function of that type (Reynolds
[1983], Wadler [1989]).

1. Define a natural transformation from idge; to idge; and prove that it is the only
such natural transformation.

2. Let x : Set x Set — Set be the functor you deifned in the previous problem
and let x’ : Set x Set — Set be the functor with the arguments swapped
Ax'"B=Bx A.

Define a natural transformation from x to x’ and show that it is the only such
natural transformation.

EECS 598: CATEGORY THEORY PS1



3. Recall the category of pointed sets Set, is defined as follows:

e Objects are pairs of a set X and a “basepoint” x, € X.

e A morphism from (X, zg) to (Y, yo) is a base-point-preserving function, i.e.,
a function f: X — Y such that f(z) = yo. Identity and composition are
simply identity and composition of functions.

Define two different natural transformations from idse, to idge;, and prove that
these are the only two such natural transformations.

EECS 598: CATEGORY THEORY PS1



REFERENCES 4

References

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World
Computer Congress, Paris, France, September 19-23, 1983, pages 513-523. North-
Holland /IFIP, 1983.

Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth
international conference on Functional programming languages and computer archi-
tecture, FPCA 1989, London, UK, September 11-13, 1989, pages 347-359. ACM,
1989. doi: 10.1145/99370.99404. URL https://doi.org/10.1145/99370.99404.

EECS 598: CATEGORY THEORY PS1



