
Problem Set 2: Simply Typed Lambda Calculus

Released: September 11, 2025
Due: September 25, 2025, 11:59pm

Submit your solutions to this homework on Canvas alone or in a group of 2 or 3.
Your solutions must be submitted in pdf produced using LaTeX.

Problem 1 Laws of Exponentiation

We say that x : A ⊢ M : B and y : B ⊢ N : A form an isomorphism if x : A ⊢
N [M/y] = x and y : B ⊢ M [N/x] = y : B. In this case we say A and B are
isomorphic, written A ∼= B.

Implement the lambda terms for the following isomorphisms. You do not need to
include the typing derivation, just the terms themselves. Provide proofs that (1) and
(4) are isomorphisms using the equational theory. You do not need to explicitly write
the proof tree, but just explain what rules are used to justify the equalities.

1. A ⇒ B ⇒ C ∼= (A×B) ⇒ C

2. A ⇒ (B × C) ∼= (A ⇒ B)× (A ⇒ C)

3. (A ⇒ 1) ∼= 1

4. (A+B) ⇒ C ∼= (A ⇒ C)× (B ⇒ C)

5. 0 ⇒ C ∼= 1

This gives an idea of why A ⇒ B is in category theory sometimes called the expo-
nential and written BA.

.

Problem 2 Lawvere’s Fixed Point Theorem

We saw that Boolean semantics of IPL was incomplete for the signature consisting
of a single propositional variable, because the law of excluded middle is true in all
Boolean models but not provable.

In this problem, we consider a similar question for Set-semantics of STLC. Define
the signature Σlfpt:

1

2

1. Two base type X and D

2. Two function symbols p : X → (X ⇒ D) and e : (X ⇒ D) → X

3. One equation (called “retraction”) f : X ⇒ D ⊢ p(e(f)) = f : X ⇒ D

Such a signature may seem strange at first glance, but for any type d in a functional
programming language with recursive type definitions, we can define a corresponding
type Xd and functions p, E that satisfying the retraction axiom. For example in
Haskell:

data X d = E (X d -> d)

p :: X d -> (X d -> d)

p (E f) = f

For this problem, we will prove that this signature only has trivial models in Set,
and show a famous application of this triviality. This triviality implies that functional
programming languages that support unrestricted recursive type definitions cannot
be given non-trivial Set-theoretic semantics. Later in the course we will see that there
are non-trivial models in other categories besides Set.

1. In STLC generated by Σlfpt, construct a fixed point combinator for the type D,
that is define

• A term · ⊢ fix : (D ⇒ D) ⇒ D

• That maps any function to a fixed point in that it satisfies the equation:

f : D ⇒ D ⊢ f(fix f) = fix f : D

2. Show that that the equation

x : D, y : D ⊢ x = y : D

is true in any model of Σlfpt in Set.

3. As a corollary of part (2), prove Cantor’s theorem: that there is no surjective
function from a set S to its powerset PS. Recall that the powerset of S is
equivalent to the functions from S to the booleans 2S. You will need to use the
axiom of choice1.

.

1A more refined version of this argument can prove Cantor’s theorem without the axiom of choice.

EECS 598: Category Theory PS 1

3

Problem 3 Simultaneous Substitution

When all variables are known to be distinct, substitution M [N/x] can simply be
defined as the replacement of x with N everywhere in the term M . This definition is
the STLC version of the admissibility of the substitution principle of IPL:

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ N [M/x]
Subst(*)

The admissible principle of contraction can also be viewed as a textual substitution
in the term:

Γ, x : A, y : A,∆ ⊢ M : C

Γ, x : A,∆ ⊢ M [x/y] : C
Contraction(*)

On the other hand, the use of variables to stand for assumptions means that
exchange and weakening have no effect on the proof term:

Γ, y : B, x : A,∆ ⊢ M : C

Γ, x : A, y : B,∆ ⊢ M : C
Exchange(*)

Γ,∆ ⊢ M : C

Γ, x : A,∆ ⊢ M : C
Weakening(*)

In this exercise you will prove these principles are admissible and additionally
prove some equations about substitution. Experience shows that the simplest way
to prove these properties involves generalizing from “one-place” substitutions like
M [N/x] to “simultaneous” substitutions that simultaneously substitute for all free
variables in a term.

We define a (simultaneous) substitution from ∆ to Γ to be a function γ that for
each variable x : A ∈ Γ produces a term ∆ ⊢ γ(x) : A. We write γ : ∆ → Γ to
mean a substitution from ∆ to Γ. Note that this definition is contravariant in that a
substitution γ : ∆ → Γ maps variables in Γ to terms well-typed under ∆.

We can then define an admissible action of substitution:

γ : ∆ → Γ Γ ⊢ M : A

∆ ⊢ M [γ] : A
GenSubst

EECS 598: Category Theory PS 1

4

Defined by induction on M as follows:

x[γ] = γ(x)

f(M1, . . . ,)[γ] = f(M1[γ], . . .)

(M,N)[γ] = (M [γ], N [γ])

(πjM)[γ] = πjM [γ]

()[γ] = ()

(σjM)[γ] = σjM [γ]

(case+M{σ1x1 → N1|σ2x2 → N2})[γ] = (case+M [γ]{σ1x1 → N1[γ, x1/x1]|σ2x2 → N2[γ, x2/x2]})
(case0M{})[γ] = case0M [γ]{}

(λx.M)[γ] = λx.M [γ, x/x]

(MN)[γ] = M [γ]N [γ]

Where the notation γ,M/x is the extension of the the function to map x to M :

(γ,M/x)(y) = M (if x = y)

(γ,M/x)(y) = γ(y) (if x ̸= y)

Define the identity substitution idΓ : Γ → Γ to map each variable in Γ to itself:
id(x) = x.

Given γ : ∆ → Γ and δ : Ξ → ∆, define the composition γ ◦ δ : Ξ → Γ as
(γ ◦ δ)(x) = (γ(x))[δ].

Below assume γ : ∆ → Γ, δ : Ξ → ∆, ξ : Ξ′ → Ξ and Γ ⊢ M : A.
First, observe (no need to write the proof), that the following generalized weak-

ening principle is admissible, if Γ ⊆ Γ′, then any term typeable in the smaller context
Γ is also typable in the larger context Γ′ with the same syntax:

Γ ⊢ M : A

Γ′ ⊢ M : A
GenWeak

The proof is by induction on the typing derivation of M .

1. Define simultaneous substitutions that correspond to the principles of one-place
substitution, weakening, exchange and contraction.

2. Show (by induction on the derivation of Γ ⊢ M : A) that ∆ ⊢ M [γ] : A, i.e., that
the GenSubst typing rule is admissible. You only need to show the following
representative cases: M = x, M = f(M0, . . .), M = λx.M ′ and M = M ′ N .
Where is the GenWeak principle needed?

3. Show (by induction on M) that M [idΓ] = M . Note that this and the following
equalities are exact syntactic equalities, you will not need to use any βη rules
to prove it.

EECS 598: Category Theory PS 1

5

4. Show (by induction on M) that M [γ ◦ δ] = (M [γ])[δ]

5. Show that γ ◦ id∆ = γ and idΓ ◦ γ = γ.

6. Show as a corollary that if x2 : A2 ⊢ N1 : A1 and x3 : A3 ⊢ N2 : A2 and
x4 : A4 ⊢ N3 : A3 then (N1[N2/x2])[N3/x3] = N1[N2[N3/x3]/x2].

7. Show that (γ ◦ δ) ◦ ξ = γ ◦ (δ ◦ ξ)

.

EECS 598: Category Theory PS 1

