Lecture 16: Canonicity II

Lecturer: Max S. New Scribe: Alexander Bandukwala

October 22nd, 2025

1 Part 1 recap

We continue our Logical Relations proof.

Given
$$\cdot \vdash M : 1 + 1$$
, we want to show that $M = \sigma_0()$ or $M = \sigma_1()$.

So we need to strengthen our inductive hypothesis from Lecture 15. We need an inductive hypothesis that applies to every open term. So we define these sets of canonical terms.

$$C\ell(A) := \{M \mid \cdot \vdash M : A\}$$

$$C\ell(\Gamma) := \{\gamma \mid \gamma : \cdot \to \Gamma\}$$

$$Can[A] : C\ell(A) \to Set$$

$$Can[\Gamma] : C\ell(\Gamma) \to Set$$

$$Can[0](M) := \{\star\}$$

$$Can[0](M) := \emptyset$$

$$Can[A \times B](M) := Can[A](\pi_1 M) \times Can[B](\pi_2 M)$$

$$Can[A_0 + A_1](M) := (M = \sigma_0 N_0 \times Can[A_0](N_0)) \uplus (M = \sigma_1 N_1 \times Can[A_1](N_1))$$

$$Can[A \to B](M) := \prod_{N \in C\ell(A)} Can[A](N) \to Can[B](MN)$$

$$Can[\Gamma](\gamma) := \prod_{x : A \in \Gamma} Can[A](\gamma(x))$$

Section 1 2

1.1 Fundamental Property/Lemma of the logical relation

Define by recursion for all $\Gamma \vdash M : A$

$$Can[M]: \prod_{\gamma:C\ell(\Gamma)} Can[\Gamma](\gamma) \to Can[A](M[\gamma])$$

1.2 Partial canonicity proof: case rule

Consider

$$\frac{\Gamma \vdash M : A_0 + A_1 \qquad \Gamma, x_0 : A_0 \vdash P_0 : C \qquad \Gamma, x_1 : A_1 \vdash P_1 : C}{\Gamma \vdash \text{case } \underline{M} \{ \sigma_0 x_0 \to P_0 \mid \sigma_1 x_1 \to P_1 \} : C}$$

Assume the inductive hypothesis for the underlined subterms.

Given $\gamma : C\ell(\Gamma)$ and $\hat{\gamma} : Can[\Gamma](\gamma)$, we must construct

$$Can[C]$$
 (case $M\{\sigma_0x_0 \to P_0 \mid \sigma_1x_1 \to P_1\}[\gamma]$).

By the inductive hypothesis on M,

$$Can[M](\hat{\gamma}): Can[A_0 + A_1](M[\gamma]).$$

So $Can[A_0 + A_1](M[\gamma])$ gives either

$$(M[\gamma] = \sigma_0 N_0 \times \hat{N}_0 : Can[A_0](N_0))$$
 or $(M[\gamma] = \sigma_1 N_1 \times \hat{N}_1 : Can[A_1](N_1)).$

In the first case, $M[\gamma] = \sigma_0 N_0$. By β -reduction,

case
$$M[\gamma] \{ \sigma_0 x_0 \to P_0[\gamma] \mid \sigma_1 x_1 \to P_1[\gamma] \} = P_0[\gamma, N_0/x_0].$$

We need a canonical proof of

$$Can[\Gamma, x_0 : A_0](\gamma, N_0/x_0).$$

This is given by $\hat{\gamma}$ together with \hat{N}_0 . Then by the inductive hypothesis for P_0 ,

$$Can[C](P_0[\gamma, N_0/x_0]).$$

The second case $(M[\gamma] = \sigma_1 N_1)$ is symmetric.

1.3 Lambda expressions

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x \ M : A \Rightarrow B}$$

Given $\gamma : C\ell(\Gamma)$ and $\hat{\gamma} : Can[\Gamma](\gamma)$, we must show

$$Can[A \Rightarrow B]((\lambda x. M)[\gamma]).$$

Section 2

We have

$$(\lambda x. M)[\gamma] = \lambda x. M[\gamma, x/x].$$

By the definition of canonicity for function types, we are given

$$N: C\ell(A)$$
 and $\hat{N}: Can[A](N)$,

and must construct

$$Can[B]((\lambda x. M[\gamma, x/x]) N).$$

By β -reduction,

$$(\lambda x. M[\gamma, x/x]) N = M[\gamma, N/x].$$

By the inductive hypothesis, we have a canonicality constructor for M when applied to a canonical substitution:

$$Can[M](\hat{\gamma}, \hat{N}/x),$$

which gives the desired $Can[B](M[\gamma, N/x])$.

2 Using the Initiality Theorem to avoid induction

Work in the category **SCwF** of simple categories with families.

$$STLC[\emptyset] \longrightarrow LR$$
,

where LR is an SCwF that "encodes" the logical relation.

A practical way to build such a morphism is to construct LR over the syntactic model, i.e. equip LR with a projection $\pi_1: LR \to \mathrm{STLC}[\emptyset]$ that preserves all SCwF structure: every object (type/context) of LR lies over a corresponding syntactic object, and constructors (products, sums, arrows, etc.) in LR project to the corresponding syntactic constructors. Concretely,

$$LR \downarrow \\ STLC[\emptyset]$$

The reason for this "model-with-syntax" approach is that the interpretation of a type in LR refers to the type itself.

We know that for any ScWF that interprets all of the types that we get a homomomorphism, a functor of ScWF from the syntax into our model. And this is what we call the fundamental lemma

$$LR_{\downarrow \pi_1 \nwarrow^{FL}}$$
$$STLC[\emptyset]$$

Section 2

We prove the initiality lemma by recursion. The initiality lemmas is packaging up that recursion in a reusable way. And the way that initiality comes into all this is that we know there's a unique functor of SCwF from $STLC[\emptyset]$ to anything else which means the FL π_1 composition has to be equal to the identity. And this is going to encode the property that for every type we're defining a relation over it and for every term we're defining a canoninicity transformer about it.

2.1 The logical-relation SCwF

We define an SCwF LR that encodes the logical relation over the syntactic SCwF STLC[\emptyset].

$$LR_{ty} := (A : STLC_{ty}) \times (C\ell(A) \to \mathbf{Set})$$

$$(LR_c)_o := (\Gamma : STLC_{c,o}) \times (C\ell(\Gamma) \to \mathbf{Set})$$

$$LR_{tm}(A, \hat{A})(\Gamma, \hat{\Gamma}) := (\Gamma \vdash M : A) \times (\prod_{\gamma : C\ell(\Gamma)} \hat{\Gamma}(\gamma) \to \hat{A}(M[\gamma])$$

$$(LR_c)((\Delta, \hat{\Delta}), (\Gamma, \hat{\Gamma})) := (\gamma : \Delta \to \Gamma) \times (\prod_{x : A \in \Gamma} \prod_{\delta : C\ell(\Delta)} \hat{\Delta}(\delta) \to \hat{A}(\gamma(x)[\delta]))$$

$$(M, \hat{M}) \circ (\gamma, \hat{\gamma}) := (M[\gamma], \lambda\delta : C\ell(\Delta).\lambda\hat{\delta} : \hat{\Delta}.\hat{M}(\hat{\gamma}(\hat{\delta}))\hat{A}(M[\gamma][\delta]))$$

Here we use the notation $\hat{A} := C\ell(A) \to \mathbf{Set}$ and $\hat{\Gamma} := C\ell(\Gamma) \to \mathbf{Set}$.

2.2 Closed Terms and Families

We have a functor from the syntactic category of STLC contexts to **Set** that takes each context to its set of *closed terms*:

$$STLC[\emptyset] \xrightarrow{C\ell} \mathbf{Set}.$$

More generally, for any simple category with families S, we can define a similar construction of *closed terms*. The idea is that $C\ell$ maps each type A in S to the set of its closed terms, and each context Γ to the set of closed substitutions into it:

$$C\ell(A) := Tm_{\emptyset}^{S}(A)$$
 and $C\ell(\Gamma) := S(\emptyset, \Gamma).$

Thus, we can view $C\ell$ as a functor

$$S[\emptyset] \xrightarrow{C\ell} \mathbf{Set}.$$

The other component we need is the which is another simple category with families, called **Fam** (for "families"). In this category:

$$\mathbf{Fam} = \{(A: \mathbf{Set},\, A \to \mathbf{Set})\},$$

so each object is a set equipped with a family of sets indexed by it.

Section 2 5

Putting these pieces together, we can view the logical relation construction LR that combines the syntax and semantics:

$$\begin{array}{ccc} LR & \longrightarrow & \mathbf{Fam} \\ \downarrow & & \downarrow^{\pi_1} \\ \mathrm{STLC}^{C(\emptyset)} & \stackrel{C\ell}{\longrightarrow} & \mathbf{Set} \end{array}$$