Lecture 11: Universal Properties III

Lecturer: Max S. New Scribe: Yuchen Jiang

October 1, 2025

1 Presheaves and Yoneda's Lemma

Recap: definition of a presheaf.

Definition 1. A presheaf \mathcal{P} on a category \mathcal{C} defines

- $\forall X \in C_0$, a set $\mathcal{P}(X)$
- $\forall X, Y \in C_0$ and $f: Y \to X$, an action $\circ_{\mathcal{P}}$

$$\frac{p:\mathcal{P}(X) \qquad f:Y\to X}{p\circ_{\mathcal{P}} f:\mathcal{P}(Y)}$$

and the action should look like composition, i.e. the identity and composition of morphisms in C should be preserved.

$$p \circ_{\mathcal{P}} id_X = p$$
$$p \circ_{\mathcal{P}} (g \circ_{\mathcal{C}} f) = (p \circ_{\mathcal{P}} g) \circ_{\mathcal{P}} f$$

Remark. The definition above can be interpreted as a functor: a presheaf \mathcal{P} on a category \mathcal{C} is a functor $P: \mathcal{C}^{op} \to \operatorname{Set}$.

As a result, the right notion of morphism between presheaves is a natural transformation. Let \mathcal{P} and \mathcal{Q} be presheaves on \mathcal{C} , then a natural transformation $\alpha: \mathcal{P} \Rightarrow \mathcal{Q}$ is a family of morphisms $\alpha_X: \mathcal{P}(X) \to \mathcal{Q}(X)$ for all $X \in \mathcal{C}_0$ s.t.

$$\forall f: Y \to X \text{ and } p: \mathcal{P}(X), \alpha_Y(p \circ_{\mathcal{P}} f) = \alpha_X(p) \circ_{\mathcal{Q}} f$$

We also talked about the analogy between sets, preorders, and categories.

Set	Preorder	Category
=	<u>≤</u>	\rightarrow
Functions	Monotone Functions	Functors
Subsets / Predicates	Downwards-Closed Subsets	Presheaves

Now let's talk about how the Yoneda's Lemma looks like in these different contexts.

Section 1 2

Yoneda's Lemma for Sets

For any set X, there exists its power set $\mathscr{P}X$ and a function

$$X \stackrel{\{-\}}{\longrightarrow} \mathscr{P} X$$

which is the singleton set. Yoneda's Lemma for Sets simply states that $\forall X, \forall P \subseteq X$,

$$\{x\} = P \text{ iff } x \in P \text{ and } \forall y \in P, \ y = x$$

We can instead think of \mathscr{P} as a function $X\to 2$, i.e. a predicate, then the following holds:

$$\exists ! x. P(x) := \{x\} = \{y \mid P(y)\}$$

Yoneda's Lemma for Preorders

We've already seen the baby Yoneda's Lemma for preorders. $\forall x, S \subseteq_{\text{down}} P$, the principle downset $\downarrow x \subseteq S$ iff $x \in S$.

Yoneda's Lemma for Categories

Given a category \mathcal{C} , we can define a presheaf \sharp for each object $X \in \mathcal{C}_0$ as follows:

- $\sharp X: \mathcal{C}^{op} \to \operatorname{Set}$
- At some object Y, $(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)(Y) := \mathcal{C}(Y,X)$

$$\frac{f \in (\, \mathop{\updownarrow} X)(Y) \qquad g \in \mathcal{C}(Z,Y)}{f \circ_{\mathop{\updownarrow}} g := f \circ g}$$

Stepping back for a second, we can ask a question: what's an obvious element of the presheaf $\mbox{$\sharp$} X$? Well we can certainly think of the identity morphism:

$$\mathrm{id}_X:(\mathop{\updownarrow} X)(X)$$

Lemma 1. $\forall p : \mathcal{P}(X)$, there exists a unique natural transformation $[p] : \ \ X \Rightarrow \mathcal{P}$ s.t. $[p]_X(\mathrm{id}_X) = p$

Proof. Given $p: \mathcal{P}(X)$, we can define $[p]: \mathcal{L}X \Rightarrow \mathcal{P}$ as follows: $\forall Y \in \mathcal{C}_0$,

$$[p]_Y(f) := p \circ_{\mathcal{P}} f$$

Then we need to show that it's natural and unique.

By natural we mean $[p]_X(\mathrm{id}_X) = p$ and $[p](g \circ f) = [p](g) \circ_{\mathcal{P}} f$. They both follow from the definition of [p].

By unique we mean for any two natural transformations $\alpha, \beta : \sharp X \Rightarrow \mathcal{P}$ s.t. $\alpha_X(\mathrm{id}_X) = p = \beta_X(\mathrm{id}_X)$, we have $\alpha = \beta$. We want to show that $\alpha_Y(f) = \beta_Y(f)$ for all $Y \in \mathcal{C}_0$ and $f : Y \to X$. Since

$$\alpha_Y(f) = \alpha_Y(\mathrm{id}_X \circ f) = \alpha_X(\mathrm{id}_X) \circ_{\mathcal{P}} f = p \circ_{\mathcal{P}} f$$

and similarly for β , we get $\alpha_Y(f) = \beta_Y(f)$. Therefore $\alpha = \beta$.

2 Universal Elements of Presheaves

$$[q]_X(\eta) = q$$

Universal elements are unique up to unique isomorphism.

Theorem 1. Given a presheaf \mathcal{P} and an universal X-element $\eta: \mathcal{P}(X)$ and another presheaf \mathcal{Q} and an universal X-element $\epsilon: \mathcal{Q}(X)$, there exists a unique natural isomorphism $i: \mathcal{P} \Rightarrow \mathcal{Q}$ s.t. $i_X(\eta) = \epsilon$.

Proof. We simply define $i := [\epsilon] : \mathcal{P} \Rightarrow \mathcal{Q}$ and its inverse $i^{-1} := [\eta] : \mathcal{Q} \Rightarrow \mathcal{P}$. Then we verify that i is indeed a natural isomorphism. We want to show (and similarly for $i \circ i^{-1}$):

$$i^{-1} \circ i = \mathrm{id} : \mathcal{P} \Rightarrow \mathcal{P}$$

which means $i^{-1}(i(\eta)) = \eta$, namely $[\eta]([\epsilon](\eta)) = \eta$. By definition, $[\epsilon](\eta) = \epsilon$, and $[\eta](\epsilon) = \eta$. Therefore the above equation holds, and similarly for the other direction.

Corollary 1. If $\eta_X : \mathcal{P}(X)$ is a universal element, then

$$[\eta_X]: \ \ \ \ \ \stackrel{\sim}{\longrightarrow} \ \mathcal{P}$$

We denote natural isomorphism by $\stackrel{\sim}{\longrightarrow}$.

A second part of the Yoneda's Lemma:

Lemma 2. The universal element of a presheaf \mathcal{P} at object X is isomorphic to the natural isomorphism between the Yoneda embedding $\sharp X$ and \mathcal{P} .

UnivElt
$$\mathcal{P}(X) \cong \text{NatIso } \& X \mathcal{P}$$

This part of the lemma means that we can find the universal element if we know the natural isomorphism $i: \ \ X \xrightarrow{\sim} \ \mathcal{P}$, namely $i_X(\mathrm{id}_X): \ \mathcal{P}(X)$ is universal.

Proof. Let $q: \mathcal{Q}(X)$ be an arbitrary element of \mathcal{Q} . We want to show that there exists a unique natural transformation $[q]: \mathcal{L}X \Rightarrow \mathcal{Q}$ s.t. $[q]_X(i_X(\mathrm{id})) = q$.

We know that $i^{-1}(p): (\ \xi X)(Y)$, namely $\mathcal{C}(Y,X)$, which can be composed with $q: \mathcal{Q}(X)$ so that we can define $[q]_Y(p):=q\circ i^{-1}(p):\mathcal{Q}(Y)$. Therefore the following holds:

$$[q]_Y(i(\mathrm{id})) = q \circ i^{-1}(i(\mathrm{id})) = q$$

which is exactly what we want to show.

What we've just shown hints to an elegant construction of the universal element from the natural isomorphism $i: \& X \xrightarrow{\sim} \mathcal{P}$. For any presheaf \mathcal{Q} , we can construct the natural transformation $\alpha: \mathcal{P} \Rightarrow \mathcal{Q}$ by composing $i^{-1}: \mathcal{P} \Rightarrow \& X$ and $[q]: \& X \Rightarrow \mathcal{Q}$:

$$\mathcal{P} \xrightarrow{\sim} \sharp X \Rightarrow \mathcal{Q}$$

which concludes that universal elements are isomorphic to natural isomorphisms. From now on, we shall define all universal properties in terms of natural isomorphisms NatIso $\mbox{$\sharp$} X \mbox{$\mathcal{P}$}$ with a clever choice of $\mbox{$\mathcal{P}$}$.

3 Universal Properties, Revisited

All instances of universal properties that we've seen so far can be formulated in terms of the definition above.

Terminal Object

A terminal object is an object 1 s.t. for any object X, there exists a unique morphism $!: X \stackrel{\exists !}{\to} 1$. This definition can be rephrased as

$$X \stackrel{\exists!}{\to} 1 \cong \text{UnivElt } \mathcal{P}(1)$$

where $\mathcal{P}: \mathcal{C}^{op} \to \text{Set}$ is the presheaf that sends every object to the singleton set (the 1-element set). Namely,

$$\mathcal{P}(X) = \{*\}$$

for all $X \in \mathcal{C}_0$. In fact, we should give \mathcal{P} a name: TermPsh.

What does it mean to be a universal element of TermPsh?

- An element at the terminal object: *: TermPsh(1)
- The action of the element is $* \circ f = *$ for all $f: X \to 1$.
- The element * is universal, namely we can define a natural isomorphism [*]: $\sharp 1 \Rightarrow \text{TermPsh s.t.}$

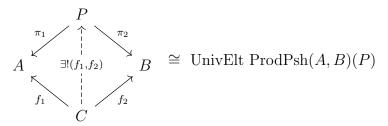
$$\mathcal{C}(X,1) \xrightarrow{\sim} \{*\}$$

where $f \mapsto * \circ f$ for all $f : X \to 1$.

Section 3 5

Product

Given two objects A, B in C, a product is an object P s.t. for any object C that has morphisms to A and B, there exists a unique morphism $(f_1, f_2) : C \to P$ s.t. the following diagram commutes:



We want to show that all data in the diagram is completely determined by the universal element of ProdPsh(A, B)(P).

First, we define the presheaf ProdPsh(A, B) as follows:

- The element at $C \in \mathcal{C}_0$ is defined as $\operatorname{ProdPsh}(A, B)(C) := \mathcal{C}(C, A) \times \mathcal{C}(C, B)$.
- The action $\circ_{\operatorname{ProdPsh}(A,B)}$ is defined as

$$\frac{(f_1, f_2) : \operatorname{ProdPsh}(A, B)(C) \quad g : \mathcal{C}(D, C)}{(f_1, f_2) \circ_{\operatorname{ProdPsh}(A, B)} g := (f_1 \circ g, f_2 \circ g)}$$

And then we define the universal element η of ProdPsh(A, B) as follows:

- η : ProdPsh(A, B)(P) is defined as (π_1, π_2) where $\pi_1 : \mathcal{C}(P, A)$ and $\pi_2 : \mathcal{C}(P, B)$ are the projections out of the product P.
- We can check that $[\eta]: \mathcal{L}P \xrightarrow{\sim} \operatorname{ProdPsh}(A, B)$ is a natural isomorphism, which means given $f: \mathcal{C}(C, P)$ for any object C, we send it through the natural isomorphism as $f \mapsto (\pi_1, \pi_2) \circ f$, which is exactly $f \mapsto (\pi_1 \circ f, \pi_2 \circ f)$. As a result, we can rewrite f to be a pair $(f_1, f_2): \operatorname{ProdPsh}(A, B)(C)$.
- Moreover, given (f_1, f_2) : ProdPsh(A, B)(C), we can take the inverse of the natural isomorphism $[\eta]^{-1}$: ProdPsh $(A, B) \xrightarrow{\sim} \sharp P$ to get a morphism (f_1, f_2) : $\mathcal{C}(C, P)$. We can then conpress the fact that the diagram commutes into a single equation:

$$(\pi_1 \circ (f_1, f_2), \pi_2 \circ (f_1, f_2)) = (f_1, f_2)$$

which corresponds awfully well with the β -laws of the product.

• Similarly, if we start with any object C instead of fixing one, we can get the η -laws by saying that all morphisms from C to P are the same morphism.

We may also formulate the universal property in terms of the natural isomorphism. Taking product as an example, we have

Initial Object

An initial object is an object 0 s.t. for any object X, there exists a unique morphism $i: 0 \stackrel{\exists!}{\to} X$. We may attempt to formulate the corresponding presheaf EmpPsh as

$$\operatorname{EmpPsh}(X) := \emptyset$$

However, there are presheaves that are not representable, and the empty presheaf is one of them, meaning that EmpPsh is not representable. Generally speaking, the right-hand universal properties like the terminal object and the products talk about maps into the object, defining morphisms into the object. But the initial object is a left-hand universal property that talks about maps out of the object. As a result, the initial object can only be defined by the terminal object on the opposite category.

It's funny to think about what a presheaf \mathcal{P} looks like when it's on an opposite category \mathcal{C}^{op} :

Presheaf on
$$\mathcal{C}^{op} \cong (\mathcal{C}^{op})^{op} \to \operatorname{Set} \cong \mathcal{C} \to \operatorname{Set}$$

It's called a contravariant presheaf, and instead of defining the action $p \circ f$ for a presheaf, we define the action $f \circ p$ for a contravariant presheaf.

As for the initial object in C, we can just define it as the terminal object in C^{op} , defined as TermPsh^{C^{op}}.

Coproduct

Similarly, the coproduct can be defined as the product on the opposite category.

$$CoprodPsh(A, B)^{\mathcal{C}} \cong ProdPsh^{\mathcal{C}^{op}}(A, B)$$

And if we expand the definition we'll get:

$$\operatorname{ProdPsh}^{\mathcal{C}^{op}}(A, B)(C) := \mathcal{C}^{op}(C, A) \times \mathcal{C}^{op}(C, B)$$
$$= \mathcal{C}(A, C) \times \mathcal{C}(B, C)$$

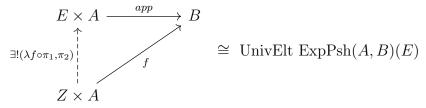
There is also the notion of a sum presheaf:

$$SumPsh(A, B)(C) := \mathcal{C}(C, A) + \mathcal{C}(C, B)$$

But it's almost never representable.

Exponential

Given two objects A, B, an exponential object E satisfies



where ExpPsh(A, B) is defined as

Section 3 7

- Elements $\operatorname{ExpPsh}(A, B)(C) := \mathcal{C}(C \times A, B)$
- Action

$$\frac{f: \mathcal{C}(C \times A, B) \qquad g: \mathcal{C}(D, C)}{f \circ_{\text{ExpPsh}(A,B)} g: \mathcal{C}(D \times A, B)}$$

defined as $f \circ_{\text{ExpPsh}(A,B)} g := f \circ (g \circ \pi_1, \pi_2)$.

• ...and the action preserves the identity and composition.

Let's look at two more easier examples.

Graph Coloring

Given a graph G, the K-coloring(G) is a function $\chi: G.v \to [K]$ from vertices to a set of K elements (colors), s.t. if vertices $g \sim h$ are adjacent, then $\chi(g) \neq \chi(h)$. Then an interesting question arises: Is the presheaf χ representable? (Is there a graph G with a universal K-coloring?) That is to say, can we find a graph [K] such that $\chi: K$ -coloring([K]) is the universal K-coloring?

$$G \xrightarrow{\varphi} [K] \xrightarrow{\chi} [K]$$

In other words, can we find a graph $\lceil K \rceil$ such that for any graph G, the following natural isomorphism holds:

$$GraphHom(G, \lceil K \rceil) \cong K$$
-coloring(G)

The answer is we can define $\lceil K \rceil$ as a complete graph on K vertices. All vertices are connected to each other, except for itself. In this way, each vertex represents a unique color, and all colors can only have neighbors of different colors. Defining the graph homomorphism from G to $\lceil K \rceil$ is then the same as defining a color-assignment function.

Subobject Classifier

Revisiting the Powerset Functor $\mathscr{P}: \operatorname{Set}^{op} \Rightarrow \operatorname{Set}$. The element $\mathscr{P}(X)$ is the powerset of X. Given $f: X \to Y$, we can define $f^{-1}: \mathscr{P}(Y) \to \mathscr{P}(X)$ as

$$f^{-1}(S) := \{ x \in X \mid f(x) \in S \}$$

Then what would the universal element of \mathscr{P} be? Suppose we call it $\eta : \mathscr{P}(A)$, and it being universal means functions $X \to A$ should be isomorphic to the subsets of X:

$$X \to A \cong \mathscr{P}(X)$$

The only choice of A that satisfies this is A=2, the two-element set $\{0,1\}$. We can conclude that $X\to 2\cong \mathscr{P}(X)$, namely $\& 2\cong \mathscr{P}$.

If we name the universal element $\eta: \mathscr{P}(2)$, then the natural isomorphism $[\eta]: (X \to 2) \xrightarrow{\sim} \mathscr{P}(X)$ is defined as

$$[\eta]_X(f) := \{x \mid f(x) = 1\}$$

where f(x) = 1 means $f(x) \in \{1\}$.

This universal property in topos theory is called "Subobject Classifier", a generalization of the predicate to arbitrary categories.

3.1 Universal Properties are Essentially Unique

Finally, we prove one more theorem about universal properties: they are unique up to unique isomorphism. We approach this theorem in two steps.

First, we ask: is $\mathcal{L}: \mathcal{C} \to \mathrm{Psh}(\mathcal{C})$ a functor? We've been defining how \mathcal{L} acts at objects. Now at least we can extend this operation to be a functor by defining how \mathcal{L} acts at morphisms.

Given $f: X \to Y$, we can define $\sharp f: \sharp X \Rightarrow \sharp Y$ as follows:

which can be concluded by $\sharp f = f \circ -$.

The naturality of $\sharp f$:

$$f \circ (g \circ h) = (\ \ \sharp \ f)_Z(g \circ h) = ((\ \ \sharp \ f)_Z(g)) \circ h = (f \circ g) \circ h$$

Now that we've established that \sharp is a functor, the second step is to show that:

Theorem 2. \(\delta \) is fully faithful.