Lecture 8: Equivalence of Categories

Lecturer: Max S. New Scribe: Yichen Tao

September 22, 2025

Topics: equivalence of Categories

1 Motivating Example

Two categories are introduced as motivating examples.

Definition 1. The category of partial functions Par is defined as follows:

- $Par_0 := Sets$, the set of all sets;
- $\operatorname{Par}_1(X,Y) := X \rightharpoonup Y$, all partial functions from X to Y;
- $id_X(x) := x$ for all $x \in X$;
- Composition is defined in the same way as total functions.

Definition 2. The category of pointed sets Set_{*} is defined as follows:

- $(\operatorname{Set}_*)_0 := (X : \operatorname{Set}) \times X$, where the second element in the pair is a distinguished base point of X. An object in the category Set_* is denoted by $X \ni x_0$ where X is the set and $x_0 \in X$ is the distinguished element.
- $(\operatorname{Set}_*)_1(X \ni x_0, Y \ni y_0) := \{f : X \to Y \mid f(x_0) = y_0\}$, i.e., the set of base-point preserving functions

Then we examine the relationship between the two categories – if they are isomorphic, or how closely are they related. We first define the following function – \uplus {err} : Par \to Set*, where:

- For $X \in \operatorname{Par}_0$, $X \uplus \{\operatorname{err}\} := X \uplus \{\operatorname{err}\} \ni \sigma_1\{\operatorname{err}\};$
- For $f: X \to Y \in \operatorname{Par}_1(X,Y)$, the corresponding morphism in Set_* , $f \uplus \{\operatorname{err}\} : X \uplus \{\operatorname{err}\} \to Y \uplus \{\operatorname{err}\}$ is defined as
 - $(f \uplus \{err\})(\sigma_0(x)) = \sigma_0(y) \text{ if } f(x) = y;$
 - $(f \uplus \{err\})(\sigma_0(x)) = \sigma_1(err)$ if f(x) is undefined;

- $-(f \uplus \{err\})(\sigma_1(err)) = \sigma_1(err).$
- $\uplus \{err\}$ can be proved to be a functor.

The function in the other direction can also be defined remove : $Set_* \rightarrow Par$ where

- For $(X \ni x_0) \in (Set_*)_0$, remove $(X \ni x_0) := X \{x_0\}$;
- For $f:(X\ni x_0)\to (Y\ni y_0)$, the resulting morphism is defined as follows:
 - remove $(f:(X\ni x_0)\to (Y\ni y_0))(x)$ is undefined if $f(x)=y_0$;
 - remove $(f: (X \ni x_0) \to (Y \ni y_0))(x) = y \text{ if } f(x) = y \neq y_0.$

remove can be proved to be a functor.

We want to see if the composition of the two functors equal to identity, and if the two categories are isomorphic. It can be easily proved that $removeo(-\uplus\{err\}) = id_{Par}$. However, the opposite does not hold. A counterexample would be $\{0\} \ni 0$. The functor remove sends $\{0\} \ni 0$ to the empty set \emptyset in Par, and if we apply $(-\uplus\{err\})$ to the empty set, the resulting object is $(\emptyset \uplus \{err\}) \ni \sigma_2(err)$. Therefore, the two categories are not isomorphic to each other. We need to define a new concept to depict the relationship between them.

2 Equivalence of Sets

Definition 3. A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if

- There exists an inverse functor $F^{-1}: \mathcal{D} \to \mathcal{C}$;
- $F \circ F^{-1} \cong id_{\mathcal{D}}$, i.e., $F \circ F^{-1}$ is a natural isomorphism in $\mathcal{D} \Rightarrow \mathcal{D}$;
- $F^{-1} \circ F \cong id_{\mathcal{C}}$, i.e., $F^{-1} \circ F$ is a natural isomorphism in $\mathcal{C} \Rightarrow \mathcal{C}$.

For the motivating example, it is easy to show that remove \circ ($- \uplus \{err\}$) $\cong id_{Par}$, since they are already equal. However, it can be tedious to establish ($- \uplus \{err\}$) \circ remove $\cong id_{Set_*}$, which involves the following steps:

- 1. For any $X \ni x_0$, define a function from $(X x_0) \uplus \{err\} \ni err$ to $X \ni x_0$;
- 2. Prove the naturality of the above function
- 3. For any $X \ni x_0$, define a function from $X \ni x_0$ to $(X x_0) \uplus \{err\} \ni err$;
- 4. Prove the naturality of the above function.

The above process can be very time-consuming, but fortunately, it can be simplify with the following definitions and theorems.

3 Natural Isomorphism

Theorem 1. Let C and D be two categories, and $F: C \to D$, $G: D \to C$ be functors between the two categories. Let $\alpha: F \Rightarrow G$ be a natural transformation. α is an isomorphism if and only if $\forall X \in C_0$, α_X is an isomorphism.

Proof. The forward direction: suppose $\alpha: F \Rightarrow G$ is an isomorphism. Therefore, there exists $\alpha^{-1}: G \Rightarrow F$ such that $\alpha^{-1} \circ \alpha = id_F$. Hence for any $X \in \mathcal{C}_0$, we have $\alpha_X^{-1} \cdot \alpha_X = id_X$.

The backward direction: suppose for any $X \in \mathcal{C}_0$, α_X is an isomorphism. We use diagrammatic reasoning to show that α is an isomorphism. Since α is a natural transformation, we have that the right square commutes. By our assumption, α_X and α_Y are both isomorphisms, and therefore, $\alpha_X^{-1} \circ \alpha_X = id_{GX}$ and $\alpha_Y^{-1} \circ \alpha_Y = id_{GY}$, and thus the large rectangle commutes. Hence, the left square commutes, i.e., $\alpha_X^{-1} \circ Ff = Gf \circ \alpha_Y^{-1}$, and thus α_X^{-1} is natural.

The following theorem simplifies the proof of equivalence between categories.

Theorem 2. Let C and D be two categories, and $F: C \to D$ be a functor. F is an equivalence of the categories if and only if

- 1. F is faithful, i.e., for all $X, Y \in \mathcal{C}$, $F_1^{X,Y} : \mathcal{C}(X,Y) \to \mathcal{D}(FX,FY)$ is injective.
- 2. F is full ¹, i.e., for all $X, Y \in \mathcal{C}$, $g : \mathcal{D}(FX, FY)$, there exists $F_1^{-1}g : \mathcal{C}(X, Y)$ such that $F_1(F_1^{-1}g) = g$.
- 3. F is essentially surjective, i.e., for all $A \in \mathcal{D}$, there exists $F^{-1}A \in \mathcal{C}$ such that $F(F^{-1}A) \cong A$.

The following theorem states that functors preserve isomorphism.

Theorem 3. Let C and D be categories, and $F: C \to D$ be a functor. If f: C(X,Y) is an isomorphism, then Ff: D(FX, FY) is also an isomorphism.

Proof. Since f is an isomorphism, there exists $f^{-1}: \mathcal{C}(Y)$ such that $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$. By properties of a functor, we have

$$Ff \circ Ff^{-1} = F(f \circ f^{-1}) = F(id_Y) = id_{FY}.$$

Similarly, it can be shown that $Ff^{-1} \circ Ff = id_{FX}$. Therefore, Ff is an isomorphism.

¹A functor is fully faithful when it is both faithful and full

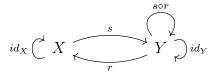
Similar properties also hold for split epimorphism and split monomorphism, but not true for monomorphisms and epimorphisms. A counterexample where functor does not preserve epimorphisms, would be the forgetful functor from the category of monoids to the category of sets. The morphism $i: \mathbb{N} \to \mathbb{Z}$ is epi in Monoid but not in Sets.

4 Special Categories

The category Iso has two objects $\{X,Y\}$ and two (non-identity) morphisms f: Iso(X,Y) and f^{-1} : Iso(Y,X) satisfying $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$. Given a category \mathcal{C} , an isomorphism in \mathcal{C} is equivalent to a functor i: Iso $\to \mathcal{C}$.

$$id_X \stackrel{f}{\overset{}{\smile}} X \stackrel{f}{\overset{}{\smile}} Y \stackrel{j}{\overset{}{\smile}} id_Y$$

The category Section has two objects $\{X,Y\}$ and three (non-identity) morphisms $s: \operatorname{Section}(X,Y), r: \operatorname{Section}(Y,X)$ and $s \circ r: \operatorname{Section}(Y,Y)$, satisfying $r \circ s = id_X$. A section in category \mathcal{C} can be represented by a functor from Section to \mathcal{C} .



5 More Examples of Non-trivial Equivalences

5.1 Predicate and Powerset

This is not an example of equivalences of categories, but of preorders. For a given set X, define the preorder of predicates as

- $\operatorname{Pred}(X) := X \to \mathbb{B};$
- For $P, Q \in \text{Pred}(X)$, $P \leq_{\text{Pred}} Q$ if P implies Q.

The preorder of subsets is defined as

- $\bullet \ \mathcal{P}(X) := \{ S \mid S \subseteq X \};$
- For $S_1, S_2 \in \mathcal{P}(X)$, $S_1 \leq_{\mathcal{P}} S_2$ if $S_1 \subseteq S_2$.

We can define functions of elements between the two preorders:

- $\bullet \ P: X \to \mathbb{B} \mapsto \{x: X \mid P(x) = T\}$
- $S \subseteq X \mapsto \in S$.

Both are order-preserving.

5.2 Families and Slices

Given a set X, the category $\operatorname{Fam}(X)$ is defined as the discrete category on $X \to \operatorname{Set}$, and can be understood as "X-indexed sets". An object in the category $\operatorname{Fam}(X)$ is denoted by $(Y_x)_{x \in X}$. The category Set/X with objects $(Y : \operatorname{Set}) \times (\pi : Y \to X)$ is the slices of sets. An object in the category Set/X is denoted by $Y \xrightarrow{\pi} X$.

$$\operatorname{Fam}(X) \xrightarrow{\Sigma} \operatorname{Set}/X$$

We define functors between the two categories as follows:

- $\Sigma(Y_x)_{x \in X} := \{(x, y) \mid x \in X, y \in Y_x\};$
- $(Y \xrightarrow{\pi} X)^{-1} := \{ y \mid \pi(y) = x \}.$