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1 Motivating Example

Two categories are introduced as motivating examples.
Definition 1. The category of partial functions Par is defined as follows:
e Pary := Sets, the set of all sets;
e Pari(X,Y):= X — Y all partial functions from X to Y
e idx(x) =z for all z € X;
e Composition is defined in the same way as total functions.
Definition 2. The category of pointed sets Set, is defined as follows:

e (Set,)o := (X : Set) x X, where the second element in the pair is a distinguished
base point of X. An object in the category Set, is denoted by X > xy where X
is the set and zy € X is the distinguished element.

o (Set,)1 (X 3z, Y 3u0):={f: X =Y | f(z0) = w0}, i-e., the set of base-point
preserving functions

Then we examine the relationship between the two categories — if they are iso-
morphic, or how closely are they related. We first define the following function

— W {err} : Par — Set, where:
e For X € Parg, X W{err} := X W {err} 3 oy{err};

e For f: X =Y € Pari(X,Y), the corresponding morphism in Set,, f & {err} :
X W {err} — Y W {err} is defined as

— (fW{err})(o0(z)) = o0(y) if f(z) =y;
— (fw{err})(oo(x)) = oy(err) if f(x) is undefined;
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— (f w{err})(oy(err)) = oy (err).

— W {err} can be proved to be a functor.
The function in the other direction can also be defined remove : Set, — Par where

e For (X 3 z) € (Sety)o, remove(X > xg) := X — {xo};
e For f: (X 3 x9) = (Y 3 1), the resulting morphism is defined as follows:

— remove(f : (X 2 29) = (Y 2 yo))(z) is undefined if f(z) = yo;
— remove(f : (X 2 x9) = (Y 2 y))(z) =y if f(x) =y # 0.

remove can be proved to be a functor.

We want to see if the composition of the two functors equal to identity, and if the
two categories are isomorphic. It can be easily proved that removeo(—W{err}) = idp,;,.
However, the opposite does not hold. A counterexample would be {0} > 0. The
functor remove sends {0} > 0 to the empty set () in Par, and if we apply (— W {err}
to the empty set, the resulting object is (0 & {err}) > oa(err). Therefore, the two
categories are not isomorphic to each other. We need to define a new concept to
depict the relationship between them.

2 Equivalence of Sets

Definition 3. A functor F': C — D is an equivalence of categories if
e There exists an inverse functor £~ : D — C;
e FoF™'2~idp,ie., FoF!isanatural isomorphism in D = D;
o F7loF~ide, ie., F~'o F is a natural isomorphism in C = C.

For the motivating example, it is easy to show that remove o (— W {err}) = idpa;,
since they are already equal. However, it can be tedious to establish (— W {err}) o
remove = idge, , which involves the following steps:

1. For any X 3 ¢, define a function from (X — x¢) W {err} > err to X > wy;
2. Prove the naturality of the above function
3. For any X > zy, define a function from X > x4 to (X — zg) W {err} > err;
4. Prove the naturality of the above function.

The above process can be very time-consuming, but fortunately, it can be simplify
with the following definitions and theorems.
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3 Natural Isomorphism

Theorem 1. Let C and D be two categories, and F': C — D, G : D — C be functors
between the two categories. Let o : F' = G be a natural transformation. « is an
1somorphism if and only if VX € Cy, ax is an isomorphism.

Proof. The forward direction: suppose « : F' = G is an isomorphism. Therefore,
there exists ™! : G = F such that ! o o = idp. Hence for any X € Cy, we have
Oé)_(l O = id X

The backward direction: suppose for any X € Cp, ax is an isomorphism. We
use diagrammatic reasoning to show that « is an isomorphism. Since « is a natural
tranformation, we have that the right square commutes. By our assumption, oy and
ay are both isomorphisms, and therefore, a;(l oax = tdgx and 04{,1 oay = idgy, and
thus the large rectangle commutes. Hence, the left square commutes, i.e., oz)}l oFf =
Gfoay', and thus o ! is natural.

1
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The following theorem simplifies the proof of equivalence between categories.

Theorem 2. Let C and D be two categories, and F' : C — D be a functor. F is an
equivalence of the categories if and only if

1. F is faithful, i.e., for all X,Y € C, F°Y : C(X,Y) = D(FX, FY) is injective.
2. Fisfull !, i.e., for all X,Y €C, g: D(FX,FY), there exists F; 'g : C(X,Y)
such that Fy(F'g) = g.

3. F is essentially surjective, i.e., forall A € D, there exists F~*A € C such that
F(F71A) = A.
The following theorem states that functors preserve isomorphism.

Theorem 3. Let C and D be categories, and F : C — D be a functor. If f:C(X,Y)
is an isomorphism, then Ff : D(FX, FY') is also an isomorphism.

Proof. Since f is an isomorphism, there exists f=! : C(Y) such that fo f~! = idy
and f~!o f =idy. By properties of a functor, we have

FfoFf'=F(fof™)=F(idy) =idpy.

Similarly, it can be shown that F f~' o F'f = idgx. Therefore, F' f is an isomorphism.
O

LA functor is fully faithful when it is both faithful and full
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Similar properties also hold for split epimorphism and split monomorphism, but
not true for monomorphisms and epimorphisms. A counterexample where functor
does not preserve epimorphisms, would be the forgetful functor from the category of
monoids to the category of sets. The morphism ¢ : N — Z is epi in Monoid but not
in Sets.

4 Special Categories

The category Iso has two objects {X,Y} and two (non-identity) morphisms f :
Iso(X,Y) and f~!: Iso(Y, X) satisfying fo f~! =idy and f~'o f = idy. Given a
category C, an isomorphism in C is equivalent to a functor ¢ : Iso — C.

f

idx C X Y D idy
f 1
The category Section has two objects {X, Y} and three (non-identity) morphisms
s : Section(X,Y’), r : Section(Y, X) and s or : Section(Y,Y), satisfying r o s = idx.
A section in category C can be represented by a functor from Section to C.

sor

. ()
idXCX CY DidY

5 More Examples of Non-trivial Equivalences

5.1 Predicate and Powerset

This is not an example of equivalences of categories, but of preorders. For a given set
X, define the preorder of predicates as

e Pred(X):= X — B;
e For P.(Q € Pred(X), P <peq @ if P implies Q.
The preorder of subsets is defined as
e P(X)={S|SCX}
e For 51,5, € P(X), S1 <p Sy if S C 5.
We can define functions of elements between the two preorders :
e P: X —-5B—{x:X|Plx)=T}
e SCX+—>—€585.

Both are order-preserving.
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5.2 Families and Slices

Given a set X, the category Fam(X) is defined as the discrete category on X — Set,
and can be understood as “X-indexed sets”. An object in the category Fam(X) is
denoted by (Yz)zex. The category Set/X with objects (Y : Set) x (7 : Y — X)) is
the slices of sets. An object in the category Set/X is denoted by Y = X.

—
Fam(X) Set/X
(=)

We define functors between the two categories as follows:
o X(YVi)eex = {(z,9) |z € X,y € Vo };
o (V5 X)i={yln(y) =}
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