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1 Motivating Example

Two categories are introduced as motivating examples.

Definition 1. The category of partial functions Par is defined as follows:

• Par0 := Sets, the set of all sets;

• Par1(X, Y ) := X ⇀ Y , all partial functions from X to Y ;

• idX(x) := x for all x ∈ X;

• Composition is defined in the same way as total functions.

Definition 2. The category of pointed sets Set∗ is defined as follows:

• (Set∗)0 := (X : Set)×X, where the second element in the pair is a distinguished
base point of X. An object in the category Set∗ is denoted by X ∋ x0 where X
is the set and x0 ∈ X is the distinguished element.

• (Set∗)1(X ∋ x0, Y ∋ y0) := {f : X → Y | f(x0) = y0}, i.e., the set of base-point
preserving functions

Then we examine the relationship between the two categories – if they are iso-
morphic, or how closely are they related. We first define the following function
− ⊎ {err} : Par → Set∗ where:

• For X ∈ Par0, X ⊎ {err} := X ⊎ {err} ∋ σ1{err};

• For f : X ⇀ Y ∈ Par1(X, Y ), the corresponding morphism in Set∗, f ⊎ {err} :
X ⊎ {err} → Y ⊎ {err} is defined as

– (f ⊎ {err})(σ0(x)) = σ0(y) if f(x) = y;

– (f ⊎ {err})(σ0(x)) = σ1(err) if f(x) is undefined;
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– (f ⊎ {err})(σ1(err)) = σ1(err).

− ⊎ {err} can be proved to be a functor.
The function in the other direction can also be defined remove : Set∗ → Par where

• For (X ∋ x0) ∈ (Set∗)0, remove(X ∋ x0) := X − {x0};

• For f : (X ∋ x0) → (Y ∋ y0), the resulting morphism is defined as follows:

– remove(f : (X ∋ x0) → (Y ∋ y0))(x) is undefined if f(x) = y0;

– remove(f : (X ∋ x0) → (Y ∋ y0))(x) = y if f(x) = y ̸= y0.

remove can be proved to be a functor.
We want to see if the composition of the two functors equal to identity, and if the

two categories are isomorphic. It can be easily proved that remove◦(−⊎{err}) = idPar.
However, the opposite does not hold. A counterexample would be {0} ∋ 0. The
functor remove sends {0} ∋ 0 to the empty set ∅ in Par, and if we apply (− ⊎ {err}
to the empty set, the resulting object is (∅ ⊎ {err}) ∋ σ2(err). Therefore, the two
categories are not isomorphic to each other. We need to define a new concept to
depict the relationship between them.

2 Equivalence of Sets

Definition 3. A functor F : C → D is an equivalence of categories if

• There exists an inverse functor F−1 : D → C;

• F ◦ F−1 ∼= idD, i.e., F ◦ F−1 is a natural isomorphism in D ⇒ D;

• F−1 ◦ F ∼= idC, i.e., F
−1 ◦ F is a natural isomorphism in C ⇒ C.

For the motivating example, it is easy to show that remove ◦ (−⊎ {err}) ∼= idPar,
since they are already equal. However, it can be tedious to establish (− ⊎ {err}) ◦
remove ∼= idSet∗ , which involves the following steps:

1. For any X ∋ x0, define a function from (X − x0) ⊎ {err} ∋ err to X ∋ x0;

2. Prove the naturality of the above function

3. For any X ∋ x0, define a function from X ∋ x0 to (X − x0) ⊎ {err} ∋ err;

4. Prove the naturality of the above function.

The above process can be very time-consuming, but fortunately, it can be simplify
with the following definitions and theorems.
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3 Natural Isomorphism

Theorem 1. Let C and D be two categories, and F : C → D, G : D → C be functors
between the two categories. Let α : F ⇒ G be a natural transformation. α is an
isomorphism if and only if ∀X ∈ C0, αX is an isomorphism.

Proof. The forward direction: suppose α : F ⇒ G is an isomorphism. Therefore,
there exists α−1 : G ⇒ F such that α−1 ◦ α = idF . Hence for any X ∈ C0, we have
α−1
X · αX = idX .
The backward direction: suppose for any X ∈ C0, αX is an isomorphism. We

use diagrammatic reasoning to show that α is an isomorphism. Since α is a natural
tranformation, we have that the right square commutes. By our assumption, αX and
αY are both isomorphisms, and therefore, α−1

X ◦αX = idGX and α−1
Y ◦αY = idGY , and

thus the large rectangle commutes. Hence, the left square commutes, i.e., α−1
X ◦Ff =

Gf ◦ α−1
Y , and thus α−1

x is natural.

GX FX GX

GY FY GY

α−1
X

Gf

αX

Ff Gf

α−1
Y αY

The following theorem simplifies the proof of equivalence between categories.

Theorem 2. Let C and D be two categories, and F : C → D be a functor. F is an
equivalence of the categories if and only if

1. F is faithful, i.e., for all X,Y ∈ C, FX,Y
1 : C(X, Y ) → D(FX,FY ) is injective.

2. F is full 1, i.e., for all X, Y ∈ C, g : D(FX,FY ), there exists F−1
1 g : C(X,Y )

such that F1(F
−1
1 g) = g.

3. F is essentially surjective, i.e., forall A ∈ D, there exists F−1A ∈ C such that
F (F−1A) ∼= A.

The following theorem states that functors preserve isomorphism.

Theorem 3. Let C and D be categories, and F : C → D be a functor. If f : C(X, Y )
is an isomorphism, then Ff : D(FX,FY ) is also an isomorphism.

Proof. Since f is an isomorphism, there exists f−1 : C(Y ) such that f ◦ f−1 = idY
and f−1 ◦ f = idX . By properties of a functor, we have

Ff ◦ Ff−1 = F (f ◦ f−1) = F (idY ) = idFY .

Similarly, it can be shown that Ff−1 ◦Ff = idFX . Therefore, Ff is an isomorphism.

1A functor is fully faithful when it is both faithful and full
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Similar properties also hold for split epimorphism and split monomorphism, but
not true for monomorphisms and epimorphisms. A counterexample where functor
does not preserve epimorphisms, would be the forgetful functor from the category of
monoids to the category of sets. The morphism i : N → Z is epi in Monoid but not
in Sets.

4 Special Categories

The category Iso has two objects {X,Y } and two (non-identity) morphisms f :
Iso(X, Y ) and f−1 : Iso(Y,X) satisfying f ◦ f−1 = idY and f−1 ◦ f = idX . Given a
category C, an isomorphism in C is equivalent to a functor i : Iso → C.

X YidX

f

f−1

idY

The category Section has two objects {X,Y } and three (non-identity) morphisms
s : Section(X,Y ), r : Section(Y,X) and s ◦ r : Section(Y, Y ), satisfying r ◦ s = idX .
A section in category C can be represented by a functor from Section to C.

X YidX

s

r

idY

s◦r

5 More Examples of Non-trivial Equivalences

5.1 Predicate and Powerset

This is not an example of equivalences of categories, but of preorders. For a given set
X, define the preorder of predicates as

• Pred(X) := X → B;

• For P,Q ∈ Pred(X), P ≤Pred Q if P implies Q.

The preorder of subsets is defined as

• P(X) := {S | S ⊆ X};

• For S1, S2 ∈ P(X), S1 ≤P S2 if S1 ⊆ S2.

We can define functions of elements between the two preorders :

• P : X → B 7→ {x : X | P (x) = T}

• S ⊆ X 7→ − ∈ S.

Both are order-preserving.
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5.2 Families and Slices

Given a set X, the category Fam(X) is defined as the discrete category on X → Set,
and can be understood as “X-indexed sets”. An object in the category Fam(X) is
denoted by (Yx)x∈X . The category Set/X with objects (Y : Set) × (π : Y → X) is
the slices of sets. An object in the category Set/X is denoted by Y

π−→ X.

Fam(X) Set/X

Σ

(−)−1

We define functors between the two categories as follows:

• Σ(Yx)x∈X := {(x, y) | x ∈ X, y ∈ Yx};

• (Y
π−→ X)−1 := {y | π(y) = x}.
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