Lecture 6: Introduction to Categories

Lecturer: Max S. New
Scribe: Christopher Davis

September 15th, 2025

1 Categories

Definition 1 (Category). A Category C' consists of:
1. Cy, a set of “objects”
2. Vx,y € Cy, the set Cy(x,y) of morphisms/ “arrows”, also called hom(C)
3. Vx, the identity id, € Cy(x,x)

4. Composition: Vx,y,z € Cy,

f € Cl(may% g€ Cl<y72)
go f S Cl(xa Z)

5. With these rules: goid =idog=g; and ho(go f) = (hog)o f

Objects can be thought of as generalizing the notion of a preorder, and morphisms
the ordering relation. We will consider some examples.

1.1 Examples

1.1.1 Preorders

Let P be a preorder. Then, we can define Cat P by
e (Cat P)g:=P
e (Cat P)i(x,y) :={x:2z <y}
o id, := %

e gof :=x
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Note that id, is well-formed, as < x. The composition is likewise valid, since
without loss of generality we can write x < z for g, and y < z for f, which by
transitivity is ¢ < z; i.e., go f.

In general, we can say that a category “looks like” a preorder when all morphisms
between the same two objects are equal. So, when we have a preorder, we can
construct a category where every hom. set has at most one element. This introduces
this concept:

Definition 2 (Thin Category). A category C' is thin provided that
vxayGCba f,9601<x,y):>f:g
Le., every Ci(x,y) has at most one morphism.

Hence, every peorder induces a thin category, and every thin category is “equiva-
lent” as a category to a preorder.

1.1.2 Sets and Functions

We can also define a category for sets and functions; call it set.

We can then define sety := { “set” of all sets }. Of course, the exact rigorous
definition of setq here is more complicated, depending on set theory and ZF(C); in
this case, it could be the (proper) class of all sets, but this is outside the scope of this
lecture. The point is that it is a collection of arbitrary sets.

Then, we can say set(X,Y) := Y, that is, the morphisms are the functions from
X to Y. Consequently, idy := (z + x) € XX and (go f)(x) := g(f(x)). The identity
and associativity rules then follow.

1.1.3 STLC

We can define the objects as STLC(e)g := types A. Then, the morphisms can be
STLC(¢)1(A, B) := {M|z : A+ M : B}; i.e., a term with a single free variable. Then,
we have M o N := M[N/X], and z : A+ z : A. Note M[z/x| = M, x[M/x] = M,
and M[N/z|[P/x] = M [%}, which satisfies the category constraints.

Alternatively, we can define the morphisms as - = M : A = B. Le., a closed term
of function type. Then, M o N := Az.M(N,) and id, := Az.x . Even more generally,
we could have the morphisms asI' M : A= B

1.1.4 Graphs

We can define the objects (vertices) as a set, G, with a relation G; C Gy x Gg. The
morphisms would then be graph homomorphisms, Graph(G, H). These are functions
on the underlying sets f : Gy — H, that preserves the graph incidence relation G.

Le., (z, y) € Gy = (fz, fy) € Hy.
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1.1.5 Quivers

A quiver would have an underlying set of vertices, )y, and, Vz,y € (g, there is a set
Q1(z,y). Then, quiver homomorphisms, f € Quiver(Q, R), are such that there is a
function of the quiver’s vertices, f : Q9 — Ry that preserves the edges. In particular,
e € Qi(z,y) = foe € Qi(for, foy).

Graphs are effectively preorders without reflexitivity or transitivity. This gener-
alizes to quivers, which are categories without composition or identity.

1.1.6 Sets and (Injective) Functions

Above are examples of categories where we’ve equipped the sets with extra structure
and likewise provide additional structure in the morphisms. Now, what about no
extra structure, but more properties are imposed instead?

Again, let the objects be sets. Define the morphisms as the injective functions
nj(X,)Y)={f: X =Y : fo = fa/ = o = 2a'}. It just needs to be shown that
injective functions are closed under composition, and that the identity is injective.

1.1.7 (Finite) Sets

On the other hand, one may add extra structure, but not change any of the mor-
phisms.

Consider the category with finite sets as objects, a sub“set” of all sets. Keep the
morphisms as all functions XY, just as in Example 2.12.

1.2 Subcategories

Notice the similarity between the category examples, and how 2.1.6/7 are restricted
versions of the original 2.1.2. We can consider them to be subcategories.

Definition 3 (Subcategory). A subcategory of a category, C, is a category, S,
whose objects are a subset of C’s objects, and whose morphisms are a subset of C'’s
morphisms. lLe., So C Cy, S; C Cf.

Definition 4 (Wide Subcategory). A subcategory S of a category C' is wide provided
that its objects are the same, meaning Sy = Cy.

Definition 5 (Full Subcategory). A subcategory S of a categort C is full provided
that its morphisms are the same, meaning S; = Cf.

Note that Example 2.1.6 is a wide subcategory (only morphisms restricted), and
2.1.7 is a full subcategory (only objects restricted).
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1.3 More Examples
1.3.1 Sets and Relations

Again let the objects be sets. Let the morphisms be the relations over sets, giving
Rel(X,Y) := P(X x Y). Note that, due to the looser morphisms, this is not a
subcategory of sets and functions.

Fix relations R C X xY and S CY x Z. Then, we can define RoS C X x Z
as (RoS) = {(z,2) : y € Y, R(z,y) N S(y,2)}. Now, we can say idx C X x X
is idy = {(z,z) : © € X}, the diagonal relation. It is then straightforward to prove
that this composure is associative, and the idy is left and right identity, thus proving
this is a valid category.

Remark 1. This is the (“very baby”) Co Yoneda Lemma.

1.3.2 Monoid

Definition 6 (Monoid). A monoid is an underlying set, My, as well as a unit element
e € My. It is equipped with a binary multiplication operator, - : Mo x My — My, where
e-m=m-e=m. This operator is also associative, with a - (b-c) = (a-b) - c.

Let the objects be the underlying set M,. The morphisms are then the monoid
homomorphisms, hom(M, N). Fix ¢ € hom(M, N). Then, ¢ : My — Ny, @(enm) =
en, and p(m -m’) = p(m) - o(m’). Le., it preserves the identity and composition.

Note the similarity between the definitions of monoids and categories. In fact, we
can upgrade any monoid to a category. For a monoid M, we can construct the “de-
looping” of M, BM. This is a category whose objects are trivial, meaning (BM ), :=
{*}. For the morphisms, BM (x,%) = My, the underlying set. Consequently, the
identity id, = ey, the identity of the monoid. Now, the monoid’s associativity and
identity laws are exactly what we need for this to be a category.

This is a one-object category. As opposed to preorder categories, which had
limited morphisms and non-limited sets, the monoid category is the opposite. It has
only one object, but no limits on morphisms.

2 Algebraic Aspect of Categories

2.1 Sets and Functions
Consider a bijection of sets. We say f: X — Y if either:
e f is injective and f is surjective.
e Jf 1Y 5 Xst. VyeY, f(f'(y) =yandVz € X, f(f(z)) ==z.

Definition 7 (Isomorphism). For a category C, a morphism f € C(X,Y) is an
isomorphism if 3f 1 € C(Y, X), where f~1 o f = idy, fo f~! = idy.
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Lemma 1 (Inverses are unique). Proof. Suppose we have f and f~1, (f~!) that sat-
isfy the above. Since this is a category, we have the unit laws, so f~! = f~1oid =

fro(fo(f))=(fof)o(f ) =ido(f7) = () O

2.2 Generalizations

How can we generalize elements into categories? E.g., object X doesn’t necessarily
have elements/ “points.”

Remark 2. An element, x, of a set X is equivalent to a function {*} — X s.t.
x> xeX

For example, we can think of {x} is the space representing a shape (circle, etc.),
and we can then embed it into a more general space X. So, there is no concept of
“point” for an arbitrary object in a category, but can get morphisms into the object.
Le., an “X-shaped point in Y” is some morphisms f € C(X,Y). We can consider
these morphisms as generalized elements.

So, now we can ask what it would mean for f to be “injective” on these generalized
elements.

Fix f € C(X,Y). Consider x : W — X and 2’ : W — X, with f: X — Y. Now,
we can say: if fox = foa’, then x = /. In this case, we call f a monomorphism
(or mono, monic).
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