
February 3, 2025

EECS 483: Compiler Construction
Lecture 6:
Tail Calls

1

Announcements

2

- Assignment 2 released today, due on Friday February 13.

- Builds on solution to Assignment 1: can use your own Assignment 1
solution or our provided reference solution as a starting point.

Learning Objectives

3

Clarifications in implementation of booleans

Define when functions are compileable to SSA blocks

Discuss pitfalls of compilation of branch with arguments to x86
Assembly code

Define minimal SSA form, benefits and how to construct it.

How to compile imperative code to SSA

Correction from Last time

4

There was an error in the code generation for intToBool last time. Let's
revisit it.

Coercions and Representation

5

Two different "obvious" ways to handle boolean values at
runtime:

all 64-bit values are valid booleans, zero is false and
everything else is true

only 0 and 1 are valid booleans

The first matches our semantics more closely, but the second
is easier to support

x86 Instructions: bitwise operators

6

and dest, src

or dest, src

bitwise and, or. Not logical and, or

mov rax, 0xF0
mov rcx, 0x0F
and rax, rcx

logical and of 0xF0 and 0x0F is true

bitwise and of 0xF0 and 0x0F is 0

Operations coincide when the only possible inputs are 0 or 1.

Implementing Coercions

7

Can implement coercions as the assembly or SSA level

1. Assembly level: coerce inputs to booleans before all logical
operations

2. SSA level: add a coercion intToBool to SSA that is
implemented by the assembly coercion

advantage: can be removed by optimizations

advantage: simplifies code generation

Lowering to SSA

8

true 1

false 0

x && y
b = intToBool(x)
c = intToBool(y)
res = b && c

SSA to x86

9

x = intToBool(y)

mov rax, [rsp - off(y)]
cmp rax, 0
mov rax, 0
setne al
mov [rsp - off(x)], rax

mov does not affect RFLAGS

SSA to x86

10

x = y & z
mov rax, [rsp - off(y)]
mov r10, [rsp - off(z)]
and rax, r10
mov [rsp - off(x)], rax

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

11

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

12

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?
13

Extending the Snake Language

14

Examples
recursion

15

Function definitions are recursive: the function
is in scope within its own body as well as in
the body of the continuation of its definition

Examples
mutual recursion

16

Function definitions separated by an and are
mutually recursive. Mutually recursive
functions are all in scope of each other.

Examples
variable capture

17

Function definitions can access variables in
scope at their definition site.

Functions as Blocks

When can a function call be compiled to a branch with
arguments?

When it is in tail position, i.e., the result of the called
function is immediately returned by the caller.

If this is the case, the call can be compiled directly to a
branch.

Otherwise it is a true call and implementing it requires
storing data on the call stack. Revisit this next week

18

Tail Position

19

Tail Position

When is an expression in tail position?

- It depends on the context, not the expression itself

20

Tail Position

21

The main expression is in tail position, as its result is the
result of the main function

Tail Position

22

The args of a prim or a call are never in tail position, as we
always have to do something else after evaluating them (the
prim/call)

Tail Position

23

The expressions in the bindings are never in tail position, as we always
have to do something else after evaluating them (the let body)

The body of the let is in tail position if the let itself is in tail position

Tail Position

24

The expressions in the cond position is never in tail position, as we always
have to do something else after evaluating them (the if)

The thn and els branches are in tail position if the if itself is in tail position

Tail Position

25

The body of a fundef is in tail position if the FunDefs
expression itself is in tail position

Tail Position

26

The body of a FunDecl is always in tail position

Function definitions to Blocks

Compile each function definition directly to a corresponding
block.

Compile mutually-recursive function definitions to mutually
recursive blocks

Compile tail function calls to branch with arguments, with
left-to-right evaluation order of arguments:

27

Tail calls to Branches

28

No continuation to use

because call is assumed to be in tail
position

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

29

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

Can cause correctness issues if we are not careful

30

Compiling Branch with Arguments

31

where is each variable stored?

x: rsp - 8

y: rsp - 16

a: rsp - 16

b: rsp - 24

z: rsp - 32

w: rsp - 40

Compiling Branch with Arguments

32

mov [rsp - 16], 5 ;; a = 5

mov rax, [rsp - 16]

mov [rsp - 24], rax ;; b = y

jmp f

Compiling Branch with Arguments
easy, sub-optimal solution

33

To ensure we don't overwrite memory we are about to use, we
can introduce extra temporaries for the arguments.

Since we allocate variables based on their nested definitions,
and the block we branch to is in scope, this guarantees that
the new temporaries occur higher on the stack than their
targets, so they won't be overwritten

Revisit this to get a more efficient allocation scheme when we
perform register allocation

Compiling Branch with Arguments
easy, sub-optimal solution

34

mov rax, [rsp - 24]

mov [rsp - 16], rax ;; a = a2

mov rax, [rsp - 32]

mov [rsp - 24], rax ;; b = b2

jmp f

Functional to SSA

Summary:

If a function is only ever tail-called locally, it can be compiled directly to an
SSA block with arguments. Tail calls can then be compiled to branch with
arguments

A tail call is a call to a function in tail position: the result of the function call is
immediately returned.

35

Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially
functional.

But, is that the best translation of the functional code? Probably not!

36

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

37

Minimal SSA

38

The following SSA is not minimal

SSA Minimization

39

Minimizing SSA form consists of two phases:

1. Block Sinking: pushing block definitions lower in the SSA AST, so that more
variables are in scope of its definition

2. Parameter dropping: removing unnecessary block parameters

Block Sinking

40

Push function definitions inside of others if they are dominated. I.e., given f and
g, if g is only ever called inside f or g, then f dominates g, and so g's definition
could be sunk inside of the definition of f.

which of f1, f2, f3 dominates which?

Block Sinking

41

f1 dominates f2 dominates f3. Sink blocks accordingly:

Parameter Dropping

42

If a parameter x is always instantiated with y or itself, then we can remove x and
replace all occurrences with y as long as it is in the scope of y.

Parameter Dropping

43

Which parameters can be dropped?

Parameter Dropping

44

Which parameters can be dropped?

Parameter Dropping

45

Minimal: only block arg is y and this does take on multiple values

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

46

Imperative Snake Language

47

Imperative Snake Language "Imp"

- Mutable variables

- statement-expression distinction

- while loops

- return/break/continue

concrete syntax

48

Imperative Snake Language

abstract syntax

49

Imperative Snake Language

well-formedness

Still have a notion of scope, shadowing:

1. Check variables are declared before use

2. Shadowing is allowed, semantically shadowed var is a
different mutable variable

Translate away shadowing to unique variable names to avoid
headaches, as usual

50

Imperative Snake Language

well-formedness

51

Imperative Snake Language

undeclared var y, z

similar to existing scope checker

well-formedness

If implementing a procedure that returns a value, need to
ensure that every code path ends in a return

52

Imperative Snake Language

well-formedness

Naked break/continue:

Verify that break/continue operations only occur inside of an
enclosing while loop

53

Imperative Snake Language

semantics

Each variable acts like a 64-bit "register"

When evaluating, need to keep track of the current state of all the variables

54

Imperative Snake Language

semantics

55

Imperative Snake Language

shadowed variables should not be overwritten. Making variable
names unique makes this easier to get right

semantics

while loop:

check the condition expression

true: execute the block and repeat

false: execute the next statement

break:

in a while loop, goto the next statement after the loop

continue:

in a loop, goto the beginning of the loop

56

Imperative Snake Language

Imperative to SSA

Step 1: Expressions, variable declarations

Step 2: variable updates

Step 3: Join Points

Step 4: Loops

Step 5: Break, Continue, Return

57

Imperative to SSA

Step 1: Expressions, variable declarations

Expressions are defined just as in Adder: generate temporaries and use
continuations to turn tree of operations into straightline code

Variable declarations are implemented just as with Let: a var declaration in Imp
becomes a variable assignment in SSA

58

Imperative to SSA
Step 2: Variable Updates

59

how to compile to SSA?

idea: the updated x acts
like it's shadowing the
original. Treat it as an
assignment to a new
variable

Imperative to SSA
Step 2: Variable Updates

60

Keep track in an environment of the
current "version" of each variable in
scope

Imperative to SSA
Step 2: Variable Updates

Simple idea: replace mutable updates with assignments to a new variable

in straightline code, mutable variables are just shadowing!

61

Imperative to SSA

62

Step 2: If

Imperative to SSA

63

Imperative to SSA

64

Join points!

Imperative to SSA
Step 2: If

Generate join points for if statements.

In an imperative program, join points are parameterized not just by a single
variable, but by as many as can be updated in the two branches.

Need to calculate which variables to include in the join point:

Simplest algorithm is called crude ϕ-node insertion: add every variable that
is in scope to the join point.

Rely on a later SSA-minimization pass to remove unnecessary parameters

Unnecessary Parameters

Imperative to SSA

Step 4: while loops

encode semantics using SSA blocks

which blocks in a loop are join points?

67

Imperative to SSA

68

loop
check e

b1 b2

Notice: loop has 2
predecessors, so it is a join
point, add block parameters

Imperative to SSA

69

Imperative to SSA

Step 5: return, break, continue

Return is easy: just compile the expression and produce the ret terminator

Break, continue: depend on the context

when we enter a while loop, we make blocks for the entry point and exit
point

continue: branch to entry of loop

break: branch to exit of loop

70

Imperative to SSA

71

loop
check e

b1 b2

Notice: loop has 2
predecessors, so it is a join
point, add block parameters

Imperative to SSA

72

loop
check e

b1 b2

If we can break, then b1 can
branch directly to b2

if break is used, b2 is also a
join point

Imperative to SSA

73

Imperative to SSA

var m = 100
var n = 25
while ! (m == n) {
 if m < n {
 n := n - m
 } else {
 m := m - n
 }
}
return m

m0 = 100
n0 = 25
loop(m2, n2):
 done(m1,n2):
 return m1
 body(m3, n3):
 lt():
 n4 = n3 - m3
 br loop(m3, n4)
 gt():
 m4 = m3 - n3
 br loop(m4, n3)
 b = m3 < n3
 cbr b lt() gt()
 c = m2 == n2
 d = not c
 cbr d body(m2, n2) done(m2, n2)
loop(m0, n0)

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

75

Minimal SSA Form

Translating Imperative code to SSA using crude phi node insertion produces
very non-minimal SSA: many extra block parameters

But because imperative code is well-structured, block sinking is not necessary,
blocks are already nested inside their immediate dominators

Only need to implement parameter dropping.

Theorem: crude phi node insertion + parameter dropping produces minimal
SSA

76

Why all the trouble?

Modern compiler infrastructure for imperative languages:

input program: mutates variables directly, variables similar semantics to
registers

middle end: translates into SSA, functional intermediate representation where
variables are never mutated

backend: translate out of SSA, map variables to registers (or memory), mutate
their values

77

SSA Benefits

Programs are easier to reason about

Common sub-expression elimination:

y and z have the same definition, so just
replace z with y.

Valid with SSA

Not valid in imperative code

78

SSA Benefits

Programs are easier to reason about

Common sub-expression elimination:

y and z have the same definition, so just
replace z with y.

Valid with SSA

Not valid in imperative code

79

SSA Benefits

Program analyses can be implemented more efficiently.

Can set up data structures that map variable uses directly
to their definitions. Skips over a great deal of irrelevant
information.

In an imperative program variables can be updated
anywhere, putting the program in SSA form makes the
dataflow information easier to access

80

SSA Benefits

When program analysis is easier:

1. More efficient generated code: Easier for compiler
writers to implement more and better analyses/
optimizations

2. More efficient compiler: accessibility of information in
SSA form allows efficient data structures for program
analysis, since more information is manifest in the
program format

81

SSA History, Benefits

Further Reading: SSA Book Chapter 1

82

