EECS 483: Compiler Construction

Lecture 6:
Tail Calls

February 3, 2025

Announcements

- Assignment 2 released today, due on Friday February 13.

- Builds on solution to Assignment 1: can use your own Assignment 1
solution or our provided reference solution as a starting point.

Learning Objectives

Clarifications in implementation of booleans
Define when functions are compileable to SSA blocks

Discuss pitfalls of compilation of branch with arguments to x86
Assembly code

Define minimal SSA form, benefits and how to construct it.

How to compile imperative code to SSA

3

Correction from Last time

There was an error in the code generation for intToBool last time. Let's
revisit It.

Coercions and Representation

Two different "obvious" ways to handle boolean values at
runtime:

all 64-bit values are valid booleans, zero is false and
everything else is true

only O and 1 are valid booleans

The first matches our semantics more closely, but the second
IS easlier to support

x86 Instructions: bitwise operators

and dest, src
or dest, src

bitwise and, or. Not logical and, or
mov rax, OxFO
mov rcx, Ox0F
and rax, rcx

logical and of OxFO and OxOF is true
bitwise and of OxFO and OxOF is O

Operations coincide when the only possible inputs are 0 or 1.

Implementing Coercions

Can implement coercions as the assembly or SSA level

1. Assembly level: coerce inputs to booleans before all logical
operations

2. SSA level: add a coercion 1ntToBool to SSA that is
Implemented by the assembly coercion

advantage: can be removed by optimizations

advantage: simplifies code generation

Lowering to SSA

intToBool(x)
intToBool(y)

SSA to x86

mov rax, [rsp — off(y)]

cmp rax, 0
X = intToBool(y) * mov rax, 0
setne al
mov [rsp — off(x)], rax

mov does not affect RFLAGS

SSA to x86

10

mov
mov
and
mov

rax, [rsp — off(y)]
r1@, [rsp — off(z)]
rax, rlo

[rsp — off(x)], rax

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

11

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

12

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1.

2
3.
4

What is the syntax of the language we are compiling?

. What is the semantics of the language we are compiling?

How can we implement that semantics in assembly code?

. How should we adapt our intermediate representation to

new features?

How can we generate assembly code from the IR?

13

Extending the Snake Language

pub enum Expr {

FunDefs {
decls: Vec<FunDecl>,
body: Box<Expr>,

}s
Call {
fun_name: Fun,
args: Vec<Expr>,
}s

pub struct FunDecl {
pub name: String,
pub parameters: Vec<String>,
pub body: Expr,

14

Examples

recursion
Function definitions are recursive: the function deg :ai(X) ' _
IS in scope within its own body as well as in - oop(x, acc):
the body of the continuation of its definition lfazc:
else:
loop(x — 1, acc * X)
1n
loop(x, 1)
1n

fac(10)

15

def even(x):

ExampleS def evn(n):

. 1f n == 0:
mutual recursion true
else:
. s odd(n - 1)
Function definitions separated by an and are nd
mutually recursive. Mutually recursive def odd(n):
functions are all in scope of each other. ifno== 0
false
else:

even(n - 1)
1n
if x >= 0:
evn(x)
else:
evn(-1 *x x)
1n
even(24)

16

Examples

variable capture
def pow(m, n):

Function definitions can access variables in de].c loop(n, acc):
scope at their definition site. 1T n ==

acc
else:
loop(n - 1, acc * m)
1n
Lloop(n, 1)

17

Functions as Blocks

When can a function call be compiled to a branch with
arguments?

When it is in tail position, i.e., the result of the called
function is iImmediately returned by the caller.

If this Is the case, the call can be compiled directly to a
branch.

Otherwise it is a true call and implementing it requires
storing data on the call stack. Revisit this next week

18

Tail Position

def fac(x): def factorial(x):
def loop(x, acc): if x ==
1T X ==
dCC 1
else: else:

loop(x - 1, acc * Xx) .
in i X * factorial(x - 1)
loop(x, 1) in

1n .
fac(10) factorial(6)

19

Tail Position

When is an expression in tail position?

- It depends on the context, not the expression itself

20

Tail Position

pub struct Prog<Var, Fun)> {
pub param: (Var, SrclLoc),
pub main: Expr<Var, Fund,

}

The main expression is In tall position, as its result is the
result of the main function

21

Tail Position

Prim { Call {
prim: Prim, fun: Fun,
args: Vec<ExprgVar, Fun>>, args: Vec<ExprgVar, Fun>>,
loc: Srcloc, loc: Srcloc,

}s }s

The args of a prim or a call are never In tail position, as we
always have to do something else after evaluating them (the
prim/call)

22

Tail Position

Let {
bindings: Vec<Binding<Var, Fun>>,
body: Box<ExprgVar, Fun>>,
Lloc: SrclLoc,

}s

The expressions in the bindings are never Iin tail position, as we always
have to do something else after evaluating them (the let body)

The body of the let is In tail position if the let itself is in tail position

23

Tail Position

It {
cond: Box<Expr<Var, Fun>>,
thn: Box<Expr<Var, Fun>>,
els: Box<Expr<Var, Fun>>,
Lloc: SrclLoc,

}s

The expressions in the cond position is never In tail position, as we always
have to do something else after evaluating them (the if)

The thn and els branches are in tail position if the if itself is in tail position

24

Tail Position

FunDefs {
decls: Vec<FunDeclgVar, Fun>>,
body: Box<Expr<Var, Fun>>,
Lloc: SrclLoc,

}s

The body of a fundef is in tail position if the FunDefs
expression itself is in tail position

25

Tail Position

pub struct FunDeclgVar, Fun> {
pub name: Fun,
pub params: Vec<(Var, SrclLoc)>,
pub body: Expr<Var, Fun>,
pub loc: Srcloc,

}

The body of a FunDecl is always in tail position

26

Function definitions to Blocks

Compile each function definition directly to a corresponding
block.

Compile mutually-recursive function definitions to mutually
recursive blocks

Compile tail function calls to branch with arguments, with
left-to-right evaluation order of arguments:

27

Tall calls to Branches

el code
X1 = ...
»» @2 code

f(el,e2,e3) * X2 = "'3 ;
..« 13! e3 code

No continuation to use X3 = ...

because call Is assumed to be In tall
position br f(x1,x2,x3)

Compiling Branch with Argumentsik=—«

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This Is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

29

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This Is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

Can cause correctness issues If we are not careful

30

Compiling Branch with Arguments

where Is each variable stored?

X =/

f(a, b): X« I'SP - 8
7 = X % 3 yv: rsp — 16
w=D>b+ z a: rsp — 16
et w b: rsp — 24

YV = X % 2

br f(5’ y) Z. 'SP — 32

w: rsp — 40

Compiling Branch with Arguments

X =/
f(a, b):
Z = X %k a
wW=0D0b+ 2Z
ret w
YV = X % 2
br f(5, y)

mov [rsp — 16], 5 ;; a = 5
mov rax, [rsp - 16]
mov [rsp — 24], rax ;; b =y

jmp f

Compiling Branch with Arguments

easy, sub-optimal solution

To ensure we don't overwrite memory we are about to use, we
can introduce extra temporaries for the arguments.

Since we allocate variables based on their nested definitions,
and the block we branch to is in scope, this guarantees that
the new temporaries occur higher on the stack than their
targets, so they won't be overwritten

Revisit this to get a more efficient allocation scheme when we
perform register allocation

33

Compiling Branch with Arguments

easy, sub-optimal solution

X =/

f(a, b):
Z = X %k a
wW=0D0b+ 2Z
ret w

V = X ¥ 2

a2 = 5

b2 =y

br f(a2, b2)

mov rax, [rsp - 24]
mov [rsp — 16], rax ;; a
mov rax, [rsp — 32]
mov [rsp — 24], rax ;; b

jmp f

az

b2

Functional to SSA

Summary:

If a function is only ever tail-called locally, it can be compiled directly to an
SSA block with arguments. Tall calls can then be compiled to branch with
arguments

A tail call is a call to a function in tail position: the result of the function call is
immediately returned.

35

Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially
functional.

But, is that the best translation of the functional code? Probably not!

36

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

37

Minimal SSA

The following SSA is not minimal

function f1() =letv=1, z=8, y=4
in fz(v, <, y) end
and fo(v,z,y)=letx =54y, y=xxz, x=x—1
in if x = 0 then f3(y, v) else f>(v, z, y) end
and f3(y,v) =letw=y+ vinwend
in f1 () end

38

SSA Minimization

Minimizing SSA form consists of two phases:

1. Block Sinking: pushing block definitions lower in the SSA AST, so that more
variables are in scope of its definition

2. Parameter dropping: removing unnecessary block parameters

39

Block Sinking

Push function definitions inside of others if they are dominated. l.e., given f and
g, If g iIs only ever called inside f or g, then f dominates g, and so g's definition
could be sunk inside of the definition of f.

function /1) =letv=1, z=8, y=4
in fz(v, <, y) end
and fo(v,z,y)=letx=5+y, y=xxz, x=x—1
in if x = 0 then f3(y, v) else f2(v, z, y) end
and f3(y,v) =letw=y+ vinwend
in f1 () end

which of f1, 2, {3 dominates which?

40

Block Sinking

f1 dominates f2 dominates 3. Sink blocks accordingly:

function f1() =
letv=1,z=8, y=4
in function f,(v, z, y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3(y,v) =letw = y+ vin w end
in f3(y, v) end
else /> (v, z,y)
end
in f,(v,z,y) end
end
in f1() end

41

Parameter Dropping

If a parameter x is always instantiated with y or itself, then we can remove x and
replace all occurrences with y as long as it is in the scope of y.

42

Parameter Dropping

Which parameters can be dropped?

function f1() =
letv=1,z=8, y=4
in function f,(v, z, y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3(y,v) =letw = y+ vin w end
in f3(y, v) end
else f>(v, z, y)
end
in f,(v,z,y) end
end
in f1() end

43

Parameter Dropping

Which parameters can be dropped?

function f1() =
letv=1, z=8, y=4
in function /> (v, z, y) =
letx =54y, y=xxz, x=x—1
inifx=0
then function f3() =letw = y+ vin w end
in f3() end

else f2(v, z, y)
end

in f>(v, z,y) end
end

in f1 () end

44

Parameter Dropping

function f1() =
letv=1, z=8, y=4
in function f>(y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3() =let w = y + v in w end
in f3() end

else f2(y)
end

in f>(y) end
end

in f1 () end

Minimal: only block arg is y and this does take on multiple values

45

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

46

Imperative Snake Language

Imperative Snake Language "Imp" var m = 100;
| var n = 25;
- Mutable variables while !(m ==
- statement-expression distinction ifm<nA
n :=n-m
- while loops } else {
- return/break/continue \ M=M=
}

return m

47

) {

Imperative Snake Language

concrete syntax

<block>: :
<expr:

<statement>

<statement> (;) <statement>

<Statement>.

IDENTIFIER (=) <expr>

IDENTIFIER {exXpr>

if)<expr> ({) <block>

if)<expr> ({] <block> (} <block>
while| <expr> {| <block>

continue}

) (=)
) (&)

IDENTIFIER
NUMBER

ifalse]

1] <expr>
<prim1D> @ <expr> @
<eXpr> <primz2» <expr>

() <expr> ()]

:b reak] —

return| <expr>

48

Imperative Snake Language

abstract syntax

pub enum Block {

End(Box<Statement>),
Sequence(Box<Statement>, Box<Block>),

pub enum Statement {
VarDecl(String, Expression),

VarUpdate(String, Expression), pub enum Expression {
If(Expression, Block, Block), Var(String),
IfElse(Expression, Block, Block), Num(164),

While(Expression, Block), Bool(bool),

Continue, Prim(Prim, Vec<Expression>),
Break, }

Return(Expression), L — —

49

Imperative Snake Language

well-formedness

Still have a notion of scope, shadowing:
1. Check variables are declared before use

2. Shadowing is allowed, semantically shadowed var is a
different mutable variable

Translate away shadowing to unigue variable names to avoid
headaches, as usual

50

Imperative Snake Language

well-formedness

var Xx =y + z;
return X

undeclared vary, z

similar to existing scope checker

51

Imperative Snake Language

well-formedness

If iImplementing a procedure that returns a value, need to
ensure that every code path ends in a return

if b {

return X;
} else {
X 1= 5

52

Imperative Snake Language

well-formedness

Naked break/continue:

Verify that break/continue operations only occur inside of an
enclosing while loop while x = 0 {

X 1= X =1
ify> 10 {
continue

}

}

continue

53

Imperative Snake Language

semantics

Each variable acts like a 64-bit "register”

When evaluating, need to keep track of the current state of all the variables

54

Imperative Snake Language

semantics

var x = 10;

if x 1=y A
var x = 14;

}

return X;

shadowed variables should not be overwritten. Making variable
names unigue makes this easier to get right

55

Imperative Snake Language

semantics

while loop:
check the condition expression
true: execute the block and repeat
false: execute the next statement
break:
in a while loop, goto the next statement after the loop
continue:

in a loop, goto the beginning of the loop

56

Imperative to SSA

Step 1: Expressions, variable declarations
Step 2: variable updates

Step 3: Join Points

Step 4: Loops

Step 5: Break, Continue, Return

57

Imperative to SSA

Step 1: Expressions, variable declarations

Expressions are defined just as in Adder: generate temporaries and use
continuations to turn tree of operations into straightline code

Variable declarations are implemented just as with Let: a var declaration in Imp

becomes a variable assignment in SSA x = 10
var x = 10; tmpd = X * X
var p = (X * X) + 5 % X + 7; tmpl = 5 % X

tmp2 = tmp@ + tmp2
p = tmp2 + 7/

58 HE B B

Imperative to SSA

Step 2: Variable Updates

59

how to compile to SSA?

iIdea: the updated x acts
like It's shadowing the
original. Treat it as an
assignment to a new
variable

Imperative to SSA

Step 2: Variable Updates

X0 = 10

tmpd = X0 x 2
X1 = tmp@ + 1
X2 = x1 + x1

Keep track in an environment of the
current "version" of each variable in
scope

Imperative to SSA

Step 2: Variable Updates
Simple idea: replace mutable updates with assignments to a new variable

In straightline code, mutable variables are just shadowing!

61

Imperative to SSA

Step 2: If

Imperative to SSA

X0 = 10
var x = 10; thn():
if y o x1 = x0 + 1
X =X+ 1 br 77
} else { els():
X = X %k 2 X2 = X0 % 2
v =% = 1 X3 = x2 -1
br 77
}

cbr y thn() els()
return X

63

Imperative to SSA

return X

Join points!

64

X0 = 10
jn(x4):
ret x4
thn():
X1 = x0 + 1
br jn(x1)
els():
X2 = X0 x 2
X3 = x2 -1
br jn(x3)

cbr y thn() els()

Imperative to SSA

Step 2: If
Generate join points for if statements.

In an imperative program, join points are parameterized not just by a single
variable, but by as many as can be updated in the two branches.

Need to calculate which variables to include in the join point;:

Simplest algorithm is called crude ¢-node insertion: add every variable that
IS In scope to the join point.

Rely on a later SSA-minimization pass to remove unnecessary parameters

Unnecessary Parameters

I
N
X
X

var w
return w + vy

X0 10
Z0 7/
jn(x4, y1, z1):

w = 2z1 x x4

tmp = w + vyl

ret tmp
thn():

X1l =x0 + 1

br jn(x1, yo, z0)
els():

y2 X0 *x 2

X2 x1l -1

br jn(x2, y2, z0)
cbr yo thn() els()

Imperative to SSA

Step 4: while loops
encode semantics using SSA blocks

which blocks in a loop are join points?

67

Imperative to SSA

Iobp
check e

while e {
CRAINIPZEN

b2

Notice: loop has 2
predecessors, so It Is a joIn
point, add block parameters

Imperative to SSA

loop(...): ;; loop is a join point, include all in-scope vars
done():

while e { .+« ;; compiled code for b2

bl * body():

. ;; compiled code for bl
b2 C = ... ,; compiled code for e

br loop(...)
cbr ¢ body() done()
br loop(...)

69

Imperative to SSA

Step 5: return, break, continue
Return is easy: just compile the expression and produce the ret terminator
Break, continue: depend on the context

when we enter a while loop, we make blocks for the entry point and exit
point

continue: branch to entry of loop

break: branch to exit of loop

70

Imperative to SSA

Iobp
check e

while e {
CRAINIPZEN

b2

Notice: loop has 2
predecessors, so It Is a joIn
point, add block parameters

Imperative to SSA

while x != 0 { loop
¥ = x — 1 check e

ify>10 { K//i;;// \\\\
break

} * — b2
If we can break, then b1 can

} branch directly to b2

If break Is used, b2 is also a
join point

(2

Imperative to SSA

loop(...): ;; loop is a join point, include all in-scope vars
done(...): ;; done is a join point as well because of break

Wh lle e { ... ;3 compiled code for b2
body () :
bl . ;3 compiled code for bl
* br loop(...)
C= ... ;; compiled code for e
b2 cbr ¢ body() done(...)
br loop(...)

/3

Imperative to SSA

mo = 100
no =(25)
— Lloop(m2, n2):
var m B 100 done(ml,n2):
var n = 25 return ml
' I (m == n) { -
while ! N body(m3, n3):
ifm<n { Lt():
N *=n —m n4 = n3 — m3
br loop(m3, n4)
b else { = 4 gt
m 1= M — N m4d = m3 — n3
1 br loop(m4, n3)
s br b0 gt ()
cbr b Lt() gt
return m C = m2 == n2
d = not c

cbr d body(m2, n2) done(m2, n2)
loop(m@, nod)

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

75

Minimal SSA Form

Translating Imperative code to SSA using crude phi node insertion produces
very non-minimal SSA: many extra block parameters

But because imperative code is well-structured, block sinking is not necessary,
blocks are already nested inside their immediate dominators

Only need to implement parameter dropping.

Theorem: crude phi node insertion + parameter dropping produces minimal
SSA

/6

Why all the trouble?

Modern compiler infrastructure for imperative languages:

iInput program: mutates variables directly, variables similar semantics to
registers

middle end: translates into SSA, functional intermediate representation where
variables are never mutated

backend: translate out of SSA, map variables to registers (or memory), mutate
their values

’r’

SSA Benefits

Programs are easier to reason about
Common sub-expression elimination:

y and z have the same definition, so just
replace z with .

Valid with SSA

Not valid in imperative code

/8

R
| .|
o€
+
-

SSA Benefits

Programs are easier to reason about
Common sub-expression elimination:

y and z have the same definition, so just
replace z with .

Valid with SSA

Not valid in imperative code

79

= %
|-
o€
+
-

SSA Benefits

Program analyses can be implemented more efficiently.

Can set up data structures that map variable uses directly .

to their definitions. Skips over a great deal of irrelevant Al = 1,

information.)
y = x1 + 1;

In an imperative program variables can be updated r—
anywhere, putting the program in SSA form makes the 2 = &

dataflow information easier to access 7 = X» 4+ 1;

80

SSA Benefits

When program analysis Is easier:

1. More efficient generated code: Easier for compiler
writers to implement more and better analyses/
optimizations

2. More efficient compiler: accessibility of information in
SSA form allows efficient data structures for program
analysis, since more information is manifest in the
program format

81

SSA History, Benefits

Further Reading: SSA Book Chapter 1

