
January 29, 2025

EECS 483: Compiler Construction
Lecture 5:
Parameterized Blocks, Booleans and Tail Calls

1

Reminders

2

- Assignment 1 is due on Friday, the 30th.

Office hours Wednesday and Friday (Yuchen) and Thursday (Max)

- Next assignment to be released on Monday, February 2nd.

Learning Objectives

3

- Understand the need for join points, parameterized blocks and code
generation

- Understand design choices when incorporating multiple data types
into a language

- How to efficiently compile tail-calls to SSA parameterized blocks and
assembly code.

Conditionals and Continuations

We need to also account for the continuation of the if expression!

The continuation is what should happen after the result of the expression is
computed. Now that result might be computed in either branch.

So the continuation needs to be run after either branch

4

Compiling Conditionals by Copying Continuations

5

Compiling Conditionals by Copying Continuations

6

+

Compiling Conditionals by Copying Continuations

7

Exponential Blowup in Copying Continuations

8

If we copy the continuation each time we perform
an if, how many times does the

 x * x

code appear in the generated ssa program?

Join Points

9

How would we write this manually in assembly code without copying?

Make a new block and jump to that same block at the end of each of the
branches. This "shares" the continuation without copying, using the fact that we
can copy the reference to the code, its label, for cheap.

Join Points

10

Solution 3: Parameterized Blocks

11

Represent the continuation directly in the syntax: a
block can have parameters just like a continuation
has an input variable.

Directly allow us to turn continuations into blocks

Parameterized Blocks

A parameterized block adds "arguments" to our basic blocks

l(x1,x2,x3):

These arguments are like other variables, they are in scope for the block, but not outside of it.

Branching to a parameterized block means providing arguments to it

br l(y1,y2,y3)

Pros: maintains the SSA property, simple code generation, simple well-formedness condition,
used in newer SSA-based compilers (Swift, MLIR, MLton)

Cons: separates the different join points syntactically in the SSA program, need to translate
most SSA papers from phi node notation

SSA Abstract Syntax

13

Well-formedness of SSA Programs

14

A benefit of sub-blocks and parameterized blocks is that we have a similar
notion of scope that we do in our Snake language.

Sub-blocks declare the names of blocks: those blocks should only be used
within the body of the sub-block declaration

Operations and Basic blocks declare the names of variables: those should only
be used within the body of the block after the declaration.

We can adapt our scope checker from the Snake language AST to the SSA
programs. Gives us a "linting" pass that can help us find bugs if we accidentally
made ill-formed SSA programs. If we implemented our compiler correctly, this
should always succeed, but can be helpful for debugging.

Compiling Conditionals by Copying Continuations

15

+

16

+

Compiling Conditionals by Generating Joins

If the continuation is small (i.e., just a ret), copying
would be better

Code Generation for Branch with Arguments

17

In compiling the conditional branch, need to know where the
arguments for the label are stored. Keep track of this
information in an environment you build up as you see sub-
block declarations.

Alternate Approach: "SSA Destruction"

18

Used in most industry SSA
compilers to squeeze out the best
possible code generation:

more intermediate IRs =~ more
opportunities for optimization

Should Conditional Branches be allowed to have arguments?

19

Should Conditional Branches be allowed to have arguments?

20

unnecessary movs if the else branch is taken

Should Conditional Branches be allowed to have arguments?

21

SSA-to-SSA transformation can eliminate

them

Join Points

22

Summary:

Join points are needed when different code paths share a common
continuation.

Express sharing by duplicating a reference to the continuation, rather than the
code for the continuation itself

SSA handles join points using either ϕ nodes or block arguments. Equivalent
approaches but different ergonomics.

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?
23

Snake v0.2: "Boa"

24

Last time we added conditionals, but we only have integer
operations so far. Let's add logical operators to write more
interesting programs.

Snake v0.2: "Boa"

25

Abstract Syntax

26

Examples

27

Semantics

28

Semantics

29

Multiple approaches to handling datatypes:

1. Statically reject type mixing: integers and booleans are
considered different and disjoint, reject programs like these

2. Statically insert coercions: integers and booleans are different
but related, add coercions back and forth when mixed

3. Dynamically checks "strong dynamic typing": integers and
booleans are different and disjoint, error at runtime if we encounter
one where the other is required

4. Dynamic coercions"weak dynamic typing": variables can be any
type, insert coercions on inputs to typed operations

For now we will implement dynamic coercions, later in the
semester we will implement dynamic checks

x86 Instructions: setcc

30

 setcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.

0xXX XX XX XX XX XX XX XX

rax
eax

ax
ah al

x86 Instructions: setcc

31

 setcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.

mov rax, 0
setge al

sets rax to 1 if the condition code ge is set, otherwise 0

x86 Instructions: bitwise operators

32

and dest, src

or dest, src

bitwise and, or. Not quite what we want for logical operations

mov rax, 0xF0
mov rcx, 0x0F
and rax, rcx

rax is 0, not 1

Coercions and Representation

33

Booleans

true is 1

false is 0

Integers

any 64-bit value

Integer to boolean: everything non-zero to 1, zero to 0

Boolean to integer: true to 1, false to 0

Implementing Coercions

34

Can implement coercions as the assembly or SSA level

1. Assembly level: coerce inputs to booleans before all logical
operations

2. SSA level: add a coercion intToBool to SSA that is
implemented by the assembly coercion

advantage: can be removed by optimizations

advantage: simplifies code generation

Lowering to SSA

35

true 1

false 0

x && y
b = intToBool(x)
c = intToBool(y)
res = b && c

SSA to x86

36

x = intToBool(y)

mov rax, [rsp - off(y)]
cmp rax, 0
mov rax, 0
setne al
mov [rsp - off(x)], rax

SSA to x86

37

x = y & z
mov rax, [rsp - off(y)]
mov r10, [rsp - off(z)]
and rax, r10
mov [rsp - off(x)], rax

Summary

38

Implement a coercions from integers to booleans before performing the
operation

a) Implement the coercion in the code generation phase from SSA to x86,
insert it into each operation

b) SSA remains untyped, oblivious to our high-level type distinctions: all
values are just 64-bits.

So far:

Adder: straightline sequence of operations

Boa so far: control-flow DAGs

Next:

cyclic control-flow graphs

computational power: finite automata

39

Extending the Snake Language

Cyclic Control Flow in Assembly and SSA

live code

40

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

41

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

42

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?
43

Extending the Snake Language

44

Extending the Snake Language

45

Examples
recursion

46

Function definitions are recursive: the function
is in scope within its own body as well as in
the body of the continuation of its definition

Examples
mutual recursion

47

Function definitions separated by an and are
mutually recursive. Mutually recursive
functions are all in scope of each other.

Examples
variable capture

48

Function definitions can access variables in
scope at their definition site.

First-order vs Higher-order Functions

In first-order programming languages, we can have function definitions but
functions cannot be passed around as values

In higher-order programming languages, functions can be passed as values,
returned from functions/expressions etc.

For now: first-order, return to higher-order later in the semester.

49

Function Names

Since functions cannot be values, treat them as a separate namespace.

Allow shadowing of function names, like variable declarations. Similarly, resolve
all function names to unique identifiers.

50

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of
arguments statically. Produce an error if the function is called with the wrong
number of arguments

51

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of
arguments statically. Produce an error if the function is called with the wrong
number of arguments

52

Overloading

53

Should we allow this call?

shadowing: the inner f wins

but we can resolve the disambiguity
based on static information

Functions as Blocks

When can a function call be compiled to a branch with
arguments?

When it is in tail position, i.e., the result of the called
function is immediately returned by the caller.

If this is the case, the call can be compiled directly to a
branch.

Otherwise it is a true call and implementing it requires
storing data on the call stack. Revisit this next week

54

Tail Position

55

Tail Position

When is an expression in tail position?

- It depends on the context, not the expression itself

56

Tail Position

57

The main expression is in tail position, as its result is the
result of the main function

Tail Position

58

The args of a prim or a call are never in tail position, as we
always have to do something else after evaluating them (the
prim/call)

Tail Position

59

The expressions in the bindings are never in tail position, as we always
have to do something else after evaluating them (the let body)

The body of the let is in tail position if the let itself is in tail position

Tail Position

60

The expressions in the cond position is never in tail position, as we always
have to do something else after evaluating them (the if)

The thn and els branches are in tail position if the if itself is in tail position

Tail Position

61

The body of a fundef is in tail position if the FunDefs
expression itself is in tail position

Tail Position

62

The body of a FunDecl is always in tail position

Function definitions to Blocks

Compile each function definition directly to a corresponding
block.

Compile mutually-recursive function definitions to mutually
recursive blocks

Compile tail function calls to branch with arguments, with
left-to-right evaluation order of arguments:

63

Tail calls to Branches

64

No continuation to use

because call is assumed to be in tail
position

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

65

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

Can cause correctness issues if we are not careful

66

Compiling Branch with Arguments

67

where is each variable stored?

x: rsp - 8

y: rsp - 16

a: rsp - 16

b: rsp - 24

z: rsp - 32

w: rsp - 40

Compiling Branch with Arguments

68

mov [rsp - 16], 5 ;; a = 5

mov rax, [rsp - 16]

mov [rsp - 24], rax ;; b = y

jmp f

Compiling Branch with Arguments
easy, sub-optimal solution

69

To ensure we don't overwrite memory we are about to use, we
can introduce extra temporaries for the arguments.

Since we allocate variables based on their nested definitions,
and the block we branch to is in scope, this guarantees that
the new temporaries occur higher on the stack than their
targets, so they won't be overwritten

Revisit this to get a more efficient allocation scheme when we
perform register allocation

Compiling Branch with Arguments
easy, sub-optimal solution

70

mov rax, [rsp - 24]

mov [rsp - 16], rax ;; a = a2

mov rax, [rsp - 32]

mov [rsp - 24], rax ;; b = b2

jmp f

Functional to SSA

Summary:

If a function is only ever tail-called locally, it can be compiled directly to an
SSA block with arguments. Tail calls can then be compiled to branch with
arguments

A tail call is a call to a function in tail position: the result of the function call is
immediately returned.

71

Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially
functional.

But, is that the best translation of the functional code? Probably not!

72

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

73

Minimal SSA

74

The following SSA is not minimal

SSA Minimization

75

Minimizing SSA form consists of two phases:

1. Block Sinking: pushing block definitions lower in the SSA AST, so that more
variables are in scope of its definition

2. Parameter dropping: removing unnecessary block parameters

Block Sinking

76

Push function definitions inside of others if they are dominated. I.e., given f and
g, if g is only ever called inside f or g, then f dominates g, and so g's definition
could be sunk inside of the definition of f.

which of f1, f2, f3 dominates which?

Block Sinking

77

f1 dominates f2 dominates f3. Sink blocks accordingly:

Parameter Dropping

78

If a parameter x is always instantiated with y or itself, then we can remove x and
replace all occurrences with y as long as it is in the scope of y.

Parameter Dropping

79

Which parameters can be dropped?

Parameter Dropping

80

Which parameters can be dropped?

Parameter Dropping

81

Minimal: only block arg is y and this does take on multiple values

