
January 29, 2025

EECS 483: Compiler Construction
Lecture 5:  
Parameterized Blocks, Booleans and Tail Calls
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Reminders
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- Assignment 1 is due on Friday, the 30th.

Office hours Wednesday and Friday (Yuchen) and Thursday (Max)


- Next assignment to be released on Monday, February 2nd.



Learning Objectives
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- Understand the need for join points, parameterized blocks and code 
generation

- Understand design choices when incorporating multiple data types 
into a language

- How to efficiently compile tail-calls to SSA parameterized blocks and 
assembly code.



Conditionals and Continuations

We need to also account for the continuation of the if expression!


The continuation is what should happen after the result of the expression is 
computed. Now that result might be computed in either branch.


So the continuation needs to be run after either branch
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Compiling Conditionals by Copying Continuations
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Compiling Conditionals by Copying Continuations
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+



Compiling Conditionals by Copying Continuations
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Exponential Blowup in Copying Continuations
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If we copy the continuation each time we perform 
an if, how many times does the


 x * x 


code appear in the generated ssa program?




Join Points
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How would we write this manually in assembly code without copying?


Make a new block and jump to that same block at the end of each of the 
branches. This "shares" the continuation without copying, using the fact that we 
can copy the reference to the code, its label, for cheap.



Join Points
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Solution 3: Parameterized Blocks
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Represent the continuation directly in the syntax: a 
block can have parameters just like a continuation 
has an input variable.


Directly allow us to turn continuations into blocks



Parameterized Blocks

A parameterized block adds "arguments" to our basic blocks


l(x1,x2,x3): 

These arguments are like other variables, they are in scope for the block, but not outside of it.


Branching to a parameterized block means providing arguments to it


br l(y1,y2,y3) 

Pros: maintains the SSA property, simple code generation, simple well-formedness condition, 
used in newer SSA-based compilers (Swift, MLIR, MLton)


Cons: separates the different join points syntactically in the SSA program, need to translate 
most SSA papers from phi node notation



SSA Abstract Syntax
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Well-formedness of SSA Programs
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A benefit of sub-blocks and parameterized blocks is that we have a similar 
notion of scope that we do in our Snake language.


Sub-blocks declare the names of blocks: those blocks should only be used 
within the body of the sub-block declaration


Operations and Basic blocks declare the names of variables: those should only 
be used within the body of the block after the declaration.


We can adapt our scope checker from the Snake language AST to the SSA 
programs. Gives us a "linting" pass that can help us find bugs if we accidentally 
made ill-formed SSA programs. If we implemented our compiler correctly, this 
should always succeed, but can be helpful for debugging. 



Compiling Conditionals by Copying Continuations
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+



16

+

Compiling Conditionals by Generating Joins

If the continuation is small (i.e., just a ret), copying 
would be better



Code Generation for Branch with Arguments
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In compiling the conditional branch, need to know where the 
arguments for the label are stored. Keep track of this 
information in an environment you build up as you see sub-
block declarations.



Alternate Approach: "SSA Destruction"
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Used in most industry SSA 
compilers to squeeze out the best 
possible code generation:


more intermediate IRs =~ more 
opportunities for optimization



Should Conditional Branches be allowed to have arguments?
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Should Conditional Branches be allowed to have arguments?

20

unnecessary movs if the else branch is taken



Should Conditional Branches be allowed to have arguments?
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SSA-to-SSA transformation can eliminate

them



Join Points
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Summary:


Join points are needed when different code paths share a common 
continuation.


Express sharing by duplicating a reference to the continuation, rather than the 
code for the continuation itself


SSA handles join points using either ϕ nodes or block arguments. Equivalent 
approaches but different ergonomics.




Extending the Snake Language

When we implement a compiler (to assembly) we need to 
address the following questions:


1. What is the syntax of the language we are compiling?


2. What is the semantics of the language we are compiling?


3. How can we implement that semantics in assembly code?


4. How should we adapt our intermediate representation to 
new features?


5. How can we generate assembly code from the IR?
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Snake v0.2: "Boa"
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Last time we added conditionals, but we only have integer 
operations so far. Let's add logical operators to write more 
interesting programs.



Snake v0.2: "Boa"
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Abstract Syntax
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Examples
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Semantics
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Semantics
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Multiple approaches to handling datatypes:


1. Statically reject type mixing: integers and booleans are 
considered different and disjoint, reject programs like these


2. Statically insert coercions: integers and booleans are different 
but related, add coercions back and forth when mixed


3. Dynamically checks "strong dynamic typing": integers and 
booleans are different and disjoint, error at runtime if we encounter 
one where the other is required


4. Dynamic coercions"weak dynamic typing": variables can be any 
type, insert coercions on inputs to typed operations


For now we will implement dynamic coercions, later in the 
semester we will implement dynamic checks



x86 Instructions: setcc
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 setcc loc


Actually a family of instructions, where cc is a condition code


Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.


0xXX XX XX XX XX XX XX XX

rax
eax

ax
ah al



x86 Instructions: setcc
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 setcc loc


Actually a family of instructions, where cc is a condition code


Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.


mov rax, 0 
setge al 

sets rax to 1 if the condition code ge is set, otherwise 0



x86 Instructions: bitwise operators
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and dest, src


or dest, src


bitwise and, or. Not quite what we want for logical operations

mov rax, 0xF0 
mov rcx, 0x0F 
and rax, rcx 

 
rax is 0, not 1



Coercions and Representation
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Booleans


true is 1


false is 0


Integers


any 64-bit value


Integer to boolean: everything non-zero to 1, zero to 0


Boolean to integer: true to 1, false to 0



Implementing Coercions
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Can implement coercions as the assembly or SSA level


1. Assembly level: coerce inputs to booleans before all logical 
operations


2. SSA level: add a coercion intToBool to SSA that is 
implemented by the assembly coercion


advantage: can be removed by optimizations


advantage: simplifies code generation



Lowering to SSA
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true 1

false 0

x && y
b = intToBool(x) 
c = intToBool(y) 
res = b && c



SSA to x86
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x = intToBool(y)

mov rax, [rsp - off(y)] 
cmp rax, 0 
mov rax, 0 
setne al 
mov [rsp - off(x)], rax



SSA to x86
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x = y & z
mov rax, [rsp - off(y)] 
mov r10, [rsp - off(z)] 
and rax, r10 
mov [rsp - off(x)], rax



Summary
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Implement a coercions from integers to booleans before performing the 
operation


a) Implement the coercion in the code generation phase from SSA to x86, 
insert it into each operation


b) SSA remains untyped, oblivious to our high-level type distinctions: all 
values are just 64-bits.



So far:


Adder: straightline sequence of operations


Boa so far: control-flow DAGs


Next:


cyclic control-flow graphs


computational power: finite automata
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Extending the Snake Language



Cyclic Control Flow in Assembly and SSA

live code
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Extending the Snake Language

What source-level programming features would allow us to 
express cyclic control-flow graphs?


1. Functional: recursive functions, tail calls


2. Imperative: while/for loops, mutable variables


We'll look at these each in turn and study how to compile them 
to SSA.
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Extending the Snake Language

What source-level programming features would allow us to 
express cyclic control-flow graphs?


1. Functional: recursive functions, tail calls 

2. Imperative: while/for loops, mutable variables


We'll look at these each in turn and study how to compile them 
to SSA.
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Extending the Snake Language

When we implement a compiler (to assembly) we need to 
address the following questions:


1. What is the syntax of the language we are compiling?


2. What is the semantics of the language we are compiling?


3. How can we implement that semantics in assembly code?


4. How should we adapt our intermediate representation to 
new features?


5. How can we generate assembly code from the IR?
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Extending the Snake Language
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Extending the Snake Language
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Examples
recursion
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Function definitions are recursive: the function 
is in scope within its own body as well as in 
the body of the continuation of its definition



Examples
mutual recursion
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Function definitions separated by an and are 
mutually recursive. Mutually recursive 
functions are all in scope of each other.



Examples
variable capture
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Function definitions can access variables in 
scope at their definition site.



First-order vs Higher-order Functions

In first-order programming languages, we can have function definitions but 
functions cannot be passed around as values


In higher-order programming languages, functions can be passed as values, 
returned from functions/expressions etc.


For now: first-order, return to higher-order later in the semester.
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Function Names

Since functions cannot be values, treat them as a separate namespace.


Allow shadowing of function names, like variable declarations. Similarly, resolve 
all function names to unique identifiers.
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Arity-Checking

If functions are first-order, we can always resolve a function call to its definition 
site. So we can determine if the function is called with the right number of 
arguments statically. Produce an error if the function is called with the wrong 
number of arguments
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Arity-Checking

If functions are first-order, we can always resolve a function call to its definition 
site. So we can determine if the function is called with the right number of 
arguments statically. Produce an error if the function is called with the wrong 
number of arguments
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Overloading
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Should we allow this call?


shadowing: the inner f wins


but we can resolve the disambiguity 
based on static information



Functions as Blocks

When can a function call be compiled to a branch with 
arguments?


When it is in tail position, i.e., the result of the called 
function is immediately returned by the caller.


If this is the case, the call can be compiled directly to a 
branch.


Otherwise it is a true call and implementing it requires 
storing data on the call stack. Revisit this next week
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Tail Position
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Tail Position

When is an expression in tail position? 

- It depends on the context, not the expression itself
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Tail Position
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The main expression is in tail position, as its result is the 
result of the main function




Tail Position
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The args of a prim or a call are never in tail position, as we 
always have to do something else after evaluating them (the 
prim/call)




Tail Position
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The expressions in the bindings are never in tail position, as we always 
have to do something else after evaluating them (the let body)


The body of the let is in tail position if the let itself is in tail position




Tail Position
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The expressions in the cond position is never in tail position, as we always 
have to do something else after evaluating them (the if)


The thn and els branches are in tail position if the if itself is in tail position




Tail Position
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The body of a fundef is in tail position if the FunDefs 
expression itself is in tail position




Tail Position
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The body of a FunDecl is always in tail position




Function definitions to Blocks

Compile each function definition directly to a corresponding 
block.


Compile mutually-recursive function definitions to mutually 
recursive blocks


Compile tail function calls to branch with arguments, with 
left-to-right evaluation order of arguments:
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Tail calls to Branches
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No continuation to use 

because call is assumed to be in tail 
position



Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous 
move, all of the variables get updated at once.


This is not supported in our target architecture, in reality we 
have to sequentialize those moves into a sequence.
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Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous 
move, all of the variables get updated at once.


This is not supported in our target architecture, in reality we 
have to sequentialize those moves into a sequence.


Can cause correctness issues if we are not careful
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Compiling Branch with Arguments
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where is each variable stored?


x: rsp - 8 

y: rsp - 16 

a: rsp - 16 

b: rsp - 24 

z: rsp - 32 

w: rsp - 40



Compiling Branch with Arguments
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mov [rsp - 16], 5 ;; a = 5 

mov rax, [rsp - 16] 

mov [rsp - 24], rax ;; b = y 

jmp f



Compiling Branch with Arguments
easy, sub-optimal solution

69

To ensure we don't overwrite memory we are about to use, we 
can introduce extra temporaries for the arguments.


Since we allocate variables based on their nested definitions, 
and the block we branch to is in scope, this guarantees that 
the new temporaries occur higher on the stack than their 
targets, so they won't be overwritten


Revisit this to get a more efficient allocation scheme when we 
perform register allocation



Compiling Branch with Arguments
easy, sub-optimal solution
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mov rax, [rsp - 24] 

mov [rsp - 16], rax ;; a = a2 

mov rax, [rsp - 32] 

mov [rsp - 24], rax ;; b = b2 

jmp f



Functional to SSA

Summary:


If a function is only ever tail-called locally, it can be compiled directly to an 
SSA block with arguments. Tail calls can then be compiled to branch with 
arguments


A tail call is a call to a function in tail position: the result of the function call is 
immediately returned.
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Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially 
functional.


But, is that the best translation of the functional code? Probably not!
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Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as 
possible.


Useful for optimization: branching to a block with arguments is compiled to a 
mov, potentially causing memory access. Want to reduce these as much as 
possible.

73



Minimal SSA
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The following SSA is not minimal



SSA Minimization

75

Minimizing SSA form consists of two phases:


1. Block Sinking: pushing block definitions lower in the SSA AST, so that more 
variables are in scope of its definition


2. Parameter dropping: removing unnecessary block parameters



Block Sinking
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Push function definitions inside of others if they are dominated. I.e., given f and 
g, if g is only ever called inside f or g, then f dominates g, and so g's definition 
could be sunk inside of the definition of f.

which of f1, f2, f3 dominates which?



Block Sinking
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f1 dominates f2 dominates f3. Sink blocks accordingly:



Parameter Dropping
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If a parameter x is always instantiated with y or itself, then we can remove x and 
replace all occurrences with y as long as it is in the scope of y. 



Parameter Dropping
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Which parameters can be dropped?



Parameter Dropping
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Which parameters can be dropped?



Parameter Dropping
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Minimal: only block arg is y and this does take on multiple values


