EECS 483: Compiler Construction

Lecture 5:
Parameterized Blocks, Booleans and Tail Calls

January 29, 2025

Reminders

- Assignment 1 is due on Friday, the 30th.
Office hours Wednesday and Friday (Yuchen) and Thursday (Max)
- Next assignment to be released on Monday, February 2nd.

Learning Objectives

- Understand the need for join points, parameterized blocks and code
generation

- Understand design choices when incorporating multiple data types
Into a language

- How to efficiently compile tail-calls to SSA parameterized blocks and
assembly code.

Conditionals and Continuations

def main(y):
let x = (if y: 5 else: 6) in
X % X

We need to also account for the continuation of the if expression!

The continuation is what should happen after the result of the expression is
computed. Now that result might be computed in either branch.

So the continuation needs to be run after either branch

4

Compiling Conditionals by Copying Continuations

1T cona:
thn%suild:
thn ... thn code
els%suld':
else: * ... els code
..« Ccond code
els cond result%suid'' = ...

T — e

cbr cond result%suid'' thn%uid els%suild'’

Compiling Conditionals by Copying Continuations

lf Cond . thn%suid:
... thn code
thn ... continuation code
els%suid':
else: . els code
* ... continuation code
e'LS ... cond code
cond result%suid'' = ...

T — e

cbr cond result%suid’'' thn%uid els%uid’

+

. continuation code

T — T 6

Compiling Conditionals by Copying Continuations

entry(y%5):
thn%0:
X%2 = 5
R res%3 = X%2 *x X%Z

ret res%3

def main(y):
let x = (if y: 5 else: 6) in
X * X

els%l:
X%4 = 06
res%s3 = X%4 *x X%4
ret res%3

cbr y%5 thn%0 els%l

7 T — S

Exponential Blowup in Copying Continuations

def main(y):
let x = 1f y: 5 else: 6 1n
let x = if y: x else: addl(x) in
let x = if y: x else: addl(x) in

thnae|

els23|

thnae|

X X X 2
If we copy the continuation each time we perform
an if, how many times does the
X * X e

thnae|

code appear in the generated ssa program?

condh? = yal

condsSd = y&i

Join Points

How would we write this manually in assembly code without copying?

Make a new block and jump to that same block at the end of each of the
branches. This "shares"” the continuation without copying, using the fact that we
can copy the reference to the code, its label, for cheap.

Join Points

. entry:
def main(y): cmp rdi, ©
let x = (if y: 5 else: 6) in jne thn#o
X %k X jmp els#1l
B— ———— thn#0:

mov rax, 5

* jmp jn#2
els#1:

mov rax, o
jmp Jn#2

JN#2:
imul rax, rax
ret

10 T —

Solution 3: Parameterized Blocks

aet main(y):. | entry(y%0) :
let x = (if y: 5 else: 6) in in#t2 (x%1) :

X Xk X result%s4d = x%1 *x x%1
T ret result%4
thn#0 () :

* br jn#2(5)
_ _ | | els#1():
Represent the continuation directly in the syntax: a br jn#2(6)

block can have parameters just like a continuation
has an input variable.

cond%5 = y%0
cbr cond%s5 thn#0() els#1()

Directly allow us to turn continuations into blocks

11

Parameterized Blocks

A parameterized block adds "arguments” to our basic blocks

1(x1,x2,x3):
These arguments are like other variables, they are in scope for the block, but not outside of it.
Branching to a parameterized block means providing arguments to it

br 1(y1,y2,y3)

Pros: maintains the SSA property, simple code generation, simple well-formedness condition,
used in newer SSA-based compilers (Swift, MLIR, MLton)

Cons: separates the different join points syntactically in the SSA program, need to translate
most SSA papers from phi hode notation

SSA AbStraCt Syntax pub enum Terminator {

pub enum BlockBody { -
Terminator(Terminator), REtUPn(ImmEdlate)’
Operation { Branch(Branch),
dest(:) VarName, ConditionalBranch {
op: Uperation, . .
next: Box<BlockBody> c§nc.1. Igm%dlatej
}, thn: Label,
SubBlocks { els: Label
blocks: Vec<BasicBlock>, }
next: Box<BlockBody> } ?
}s e
}

pub struct Branch {
pub target: Label,
pub args: Vec<Immediate>,

pub struct BasicBlock {
pub label: Label,

pub params: Vec<VarName), 1
pub body: BlockBody,

} :

Well-formedness of SSA Programs

A benefit of sub-blocks and parameterized blocks is that we have a similar
notion of scope that we do in our Snake language.

Sub-blocks declare the names of blocks: those blocks should only be used
within the body of the sub-block declaration

Operations and Basic blocks declare the names of variables: those should only
be used within the body of the block after the declaration.

We can adapt our scope checker from the Snake language AST to the SSA
programs. Gives us a "linting" pass that can help us find bugs if we accidentally
made ill-formed SSA programs. If we implemented our compiler correctly, this
should always succeed, but can be helpful for debugging.

14

Compiling Conditionals by Copying Continuations

lf Cond . thn%suid:
... thn code
thn ... continuation code
els%suid':
else: . els code
* ... continuation code
e'LS ... cond code
cond result%suid'' = ...

T — e

cbr cond result%suid’'' thn%uid els%uid’

+

. continuation code

Compiling Conditionals by Generating Joins

jn%suid''(x): ; continuation parameter

lf Cond continuation code
thn%ulid:
thn ... thn code
br jn%suid' ' (thn_res)
elser els%uid’:
* ... €els code
els br jn%suid' ' (els_res)
- - . cond code
cond result%suid'' = ...
T cbr cond result%suid’'' thn%suid els%suid’
 continuation code If the continuation is small (i.e., just a ret), copying

R — would be better

Code Generation for Branch with Arguments

mov rax, 1imml

i ov [rsp — offset(x1)], rax

1(X1'X2’X3)) oV rax, imm2
o * ov [rsp — offset(x2)], rax

: : : oV rax, 1imm3
or l(lmml’ lmmz’ imm3) ov [rsp — offset(x3)], rax

jmp L

— S —

In compiling the conditional branch, need to know where the
arguments for the label are stored. Keep track of this
information in an environment you build up as you see sub-
block declarations.

17

L(x1,x2,x3):

br 1(imml1, imm2, imm3)

L(x1,x2,x3):

* x1 = imm1l
X2 = 1mm2
X3 = 1mm3

br L

Used in most

Alternate Approach: "SSA Destruction"

industry SSA

compilers to squeeze out the best
possible code generation:

more Intermediate IRs =~ more

opportunities

|

|

|

>

for optimization

ov rax, 1imml
ov [rsp — offset(x1)], rax
OV rax, 1mm2

mov [rsp — offset(x2)], rax
mov rax, 1imm3

mov [rsp — offset(x3)], rax

]

18

mp L

Should Conditional Branches be allowed to have arguments?

mov rax, [rsp — offset(x)]

* cmp rax, ©
jne 11

jmp 12

cbr x 11 12

19

Should Conditional Branches be allowed to have arguments?

mov rax, [rsp — offset(x)]
11(vl,v2): cmp rax, ©
* mov rax, [rsp — offset(yl)]
mov [rsp — offset(vl)], rax
o mov rax, [rsp — offset(yl)]
cbr x 11(y1,y2) 12(z) mov [rsp — offset(vl)], rax
jne 11
mov rax, [rsp — offset(z)]
mov [rsp — offset(w)], rax
jmp L2

12(w):

unnecessary movs if the else branch is taken

20

Should Conditional Branches be allowed to have arguments?

11(vl,v2):
11(v1l,v2): . u
. m B * IZ(W) .
12(w): . u
o 11b():
cbr x 11(y1,y2) 12(z) 11(y1,y2)
12b():
12(2)
SSA-t0-SSA transformation can eliminate cbr x 11b 12b

them

21

Join Points

Summary:

Join points are needed when different code paths share a common
continuation.

Express sharing by duplicating a reference to the continuation, rather than the
code for the continuation itself

SSA handles join points using either ¢ nodes or block arguments. Equivalent
approaches but different ergonomics.

22

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1.

2
3.
4

What is the syntax of the language we are compiling?

. What is the semantics of the language we are compiling?

How can we implement that semantics in assembly code?

. How should we adapt our intermediate representation to

new features?

How can we generate assembly code from the IR?

23

Snake v0.2: "Boa"

Last time we added conditionals, but we only have integer

operations so far. Let's add logical operators to write more
iInteresting programs.

24

Snake v0.2: "Boa"

primb: ... |[!

prim2>: ... | (& | [|1]|[</|[<=|>/|[>=||[==/]| 1=

expr. ... | true | false

Abstract Syntax

enum Prim A

// unary
Not

// binary
And,

Or,

Lt,

LeQr

Gt,

Geqr

EQ,
Neq,

enum

26

Expression {

Bool(bool)

Examples

def main(x):
1T X >= 4 && X < 7
X

else:
0

Semantics

True ==

false ==

1f 5: ... else:

28

Semantics

Multiple approaches to handling datatypes:

1. Statically reject type mixing: integers and booleans are
considered different and disjoint, reject programs like these

2. Statically insert coercions: integers and booleans are different
but related, add coercions back and forth when mixed

3. Dynamically checks "strong dynamic typing": integers and
booleans are different and disjoint, error at runtime if we encounter
one where the other is required

4. Dynamic coercions"weak dynamic typing": variables can be any
type, insert coercions on inputs to typed operations

For now we will implement dynamic coercions, later in the
semester we will implement dynamic checks
29

x86 Instructions: setcc

setcc loc
Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code

Peculiarity: loc in this case needs to be a 1-byte register.

PDXXX XX XX XX XX XX XX XX
ah al

dX

€ax

FraXx

30

x86 Instructions: setcc

setcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code

Peculiarity: loc in this case needs to be a 1-byte register.

mov rax, 0

setge al

sets rax to 1 if the condition code ge is set, otherwise O

31

x86 Instructions: bitwise operators

and dest, src
or dest, src

bitwise and, or. Not quite what we want for logical operations
mov rax, OxFO
mov rcx, Ox0F
and rax, rcx

rax 1s 0, not 1

32

Coercions and Representation

Booleans

true I1s 1

false is O
Integers
any 64-bit value
Integer to boolean: everything non-zero to 1, zero to O

Boolean to integer: true to 1, false to O

33

Implementing Coercions

Can implement coercions as the assembly or SSA level

1. Assembly level: coerce inputs to booleans before all logical
operations

2. SSA level: add a coercion 1ntToBool to SSA that is
Implemented by the assembly coercion

advantage: can be removed by optimizations

advantage: simplifies code generation

34

Lowering to SSA

intToBool(x)
intToBool(y)

SSA to x86

mov rax, [rsp — off(y)]

cmp rax, 0
X = intToBool(y) * mov rax, 0
setne al
mov [rsp — off(x)], rax

36

SSA to x86

37

mov
mov
and
mov

rax, [rsp — off(y)]
r1@, [rsp — off(z)]
rax, rilo

[rsp — off(x)], rax

Summary

Implement a coercions from integers to booleans before performing the
operation

a) Implement the coercion in the code generation phase from SSA to x86,
iInsert it into each operation

b) SSA remains untyped, oblivious to our high-level type distinctions: all
values are just 64-bits.

38

Extending the Snake Language

So far:

Adder: straightline sequence of operations
Boa so far: control-flow DAGs

Next:
cyclic control-flow graphs

computational power: finite automata

39

Cyclic Control Flow in Assembly and SSA

llve code

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

41

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

42

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1.

2
3.
4

What is the syntax of the language we are compiling?

. What is the semantics of the language we are compiling?

How can we implement that semantics in assembly code?

. How should we adapt our intermediate representation to

new features?

How can we generate assembly code from the IR?

43

Extending the Snake Language

<decls>:
<decDh
«decls> «decl>
<decly:
def| IDENTIFIER (()<ids>()](:]<expr>
def| IDENTIFIER ((]())(:] <expr>
ds»:
| IDENTIFIER

| IDENTIFIER (,]<ids>

44

Eexpr>:

| IDENTIFIER (()<exprs>|)]

| IDENTIFIER ((][)]

| «decls> (in) <expr>

exprsy. <expr> | <expr> [,] <exprs»

Extending the Snake Language

pub enum Expr {

FunDefs {
decls: Vec<FunDecl>,
body: Box<Expr>,

}s
Call {
fun_name: Fun,
args: Vec<Expr>,
}s

pub struct FunDecl {
pub name: String,
pub parameters: Vec<String>,
pub body: Expr,

45

Examples

recursion
Function definitions are recursive: the function deg :ai(X) ' _
IS in scope within its own body as well as in - oop(x, acc):
the body of the continuation of its definition lfazc:
else:
loop(x — 1, acc * X)
1n
loop(x, 1)
1n

fac(10)

46

def even(x):

ExampleS def evn(n):

. 1f n == 0:
mutual recursion true
else:
. s odd(n - 1)
Function definitions separated by an and are nd
mutually recursive. Mutually recursive def odd(n):
functions are all in scope of each other. ifno== 0
false
else:

even(n - 1)
1n
if x >= 0:
evn(x)
else:
evn(-1 *x x)
1n
even(24)

47

Examples

variable capture
def pow(m, n):

Function definitions can access variables in de].c loop(n, acc):
scope at their definition site. 1T n ==

acc
else:
loop(n - 1, acc * m)
1n
Lloop(n, 1)

48

First-order vs Higher-order Functions

In first-order programming languages, we can have function definitions but
functions cannot be passed around as values

In higher-order programming languages, functions can be passed as values,
returned from functions/expressions etc.

For now: first-order, return to higher-order later in the semester.

49

Function Names

Since functions cannot be values, treat them as a separate namespace.

Allow shadowing of function names, like variable declarations. Similarly, resolve
all function names to unique identifiers.

50

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of

arguments statically. Produce an error if the function is called with the wrong
number of arguments

51

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of

arguments statically. Produce an error if the function is called with the wrong
number of arguments

def f(x,y,z):

1n

f(a,b)

52

Overloading

Should we allow this call?

def f(x,y,z):

shadowing: the inner f wins . n

but we can resolve the disambiguity 1N

based on static information def f(x,y):
1n

f(x,y,2)

53

Functions as Blocks

When can a function call be compiled to a branch with
arguments?

When it is in tail position, i.e., the result of the called
function is iImmediately returned by the caller.

If this Is the case, the call can be compiled directly to a
branch.

Otherwise it is a true call and implementing it requires
storing data on the call stack. Revisit this next week

54

Tail Position

def fac(x): def factorial(x):
def loop(x, acc): if x ==
1T X ==
dCC 1
else: else:

loop(x - 1, acc * Xx) .
in i X * factorial(x - 1)
loop(x, 1) in

1n .
fac(10) factorial(6)

55

Tail Position

When is an expression in tail position?

- It depends on the context, not the expression itself

56

Tail Position

pub struct Prog<Var, Fun)> {
pub param: (Var, SrclLoc),
pub main: Expr<Var, Fund,

}

The main expression is In tall position, as its result is the
result of the main function

57

Tail Position

Prim { Call {
prim: Prim, fun: Fun,
args: Vec<ExprgVar, Fun>>, args: Vec<ExprgVar, Fun>>,
loc: Srcloc, loc: Srcloc,

}s }s

The args of a prim or a call are never In tail position, as we
always have to do something else after evaluating them (the
prim/call)

58

Tail Position

Let {
bindings: Vec<Binding<Var, Fun>>,
body: Box<ExprgVar, Fun>>,
Lloc: SrclLoc,

}s

The expressions in the bindings are never Iin tail position, as we always
have to do something else after evaluating them (the let body)

The body of the let is In tail position if the let itself is in tail position

59

Tail Position

It {
cond: Box<Expr<Var, Fun>>,
thn: Box<Expr<Var, Fun>>,
els: Box<Expr<Var, Fun>>,
Lloc: SrclLoc,

}s

The expressions in the cond position is never In tail position, as we always
have to do something else after evaluating them (the if)

The thn and els branches are in tail position if the if itself is in tail position

60

Tail Position

FunDefs {
decls: Vec<FunDeclgVar, Fun>>,
body: Box<Expr<Var, Fun>>,
Lloc: SrclLoc,

}s

The body of a fundef is in tail position if the FunDefs
expression itself is in tail position

61

Tail Position

pub struct FunDeclgVar, Fun> {
pub name: Fun,
pub params: Vec<(Var, SrclLoc)>,
pub body: Expr<Var, Fun>,
pub loc: Srcloc,

}

The body of a FunDecl is always in tail position

62

Function definitions to Blocks

Compile each function definition directly to a corresponding
block.

Compile mutually-recursive function definitions to mutually
recursive blocks

Compile tail function calls to branch with arguments, with
left-to-right evaluation order of arguments:

63

Tall calls to Branches

el code
X1 = ...
»» @2 code

f(el,e2,e3) * X2 = "'3 ;
..« 13! e3 code

No continuation to use X3 = ...

because call Is assumed to be In tall
position br f(x1,x2,x3)

Compiling Branch with Argumentsik=—«

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This Is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

65

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This Is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

Can cause correctness issues If we are not careful

66

Compiling Branch with Arguments

where Is each variable stored?

X =/

f(a, b): X« I'SP - 8
7 = X % 3 yv: rsp — 16
w=D>b+ z a: rsp — 16
et w b: rsp — 24

YV = X % 2

br f(5’ y) Z. 'SP — 32

w: rsp — 40

Compiling Branch with Arguments

X =/
f(a, b):
Z = X %k a
wW=0D0b+ 2Z
ret w
YV = X % 2
br f(5, y)

mov [rsp — 16], 5 ;; a = 5
mov rax, [rsp - 16]
mov [rsp — 24], rax ;; b =y

jmp f

Compiling Branch with Arguments

easy, sub-optimal solution

To ensure we don't overwrite memory we are about to use, we
can introduce extra temporaries for the arguments.

Since we allocate variables based on their nested definitions,
and the block we branch to is in scope, this guarantees that
the new temporaries occur higher on the stack than their
targets, so they won't be overwritten

Revisit this to get a more efficient allocation scheme when we
perform register allocation

69

Compiling Branch with Arguments

easy, sub-optimal solution

X =/

f(a, b):
Z = X %k a
wW=0D0b+ 2Z
ret w

V = X ¥ 2

a2 = 5

b2 =y

br f(a2, b2)

mov rax, [rsp - 24]
mov [rsp — 16], rax ;; a
mov rax, [rsp — 32]
mov [rsp — 24], rax ;; b

jmp f

az

b2

Functional to SSA

Summary:

If a function is only ever tail-called locally, it can be compiled directly to an
SSA block with arguments. Tall calls can then be compiled to branch with
arguments

A tail call is a call to a function in tail position: the result of the function call is
immediately returned.

/1

Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially
functional.

But, is that the best translation of the functional code? Probably not!

(2

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

/3

Minimal SSA

The following SSA is not minimal

function f1() =letv=1, z=8, y=4
in fz(v, <, y) end
and fo(v,z,y)=letx =54y, y=xxz, x=x—1
in if x = 0 then f3(y, v) else f>(v, z, y) end
and f3(y,v) =letw=y+ vinwend
in f1 () end

74

SSA Minimization

Minimizing SSA form consists of two phases:

1. Block Sinking: pushing block definitions lower in the SSA AST, so that more
variables are in scope of its definition

2. Parameter dropping: removing unnecessary block parameters

75

Block Sinking

Push function definitions inside of others if they are dominated. l.e., given f and
g, If g iIs only ever called inside f or g, then f dominates g, and so g's definition
could be sunk inside of the definition of f.

function /1) =letv=1, z=8, y=4
in fz(v, <, y) end
and fo(v,z,y)=letx=5+y, y=xxz, x=x—1
in if x = 0 then f3(y, v) else f2(v, z, y) end
and f3(y,v) =letw=y+ vinwend
in f1 () end

which of f1, 2, {3 dominates which?

/6

Block Sinking

f1 dominates f2 dominates 3. Sink blocks accordingly:

function f1() =
letv=1,z=8, y=4
in function f,(v, z, y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3(y,v) =letw = y+ vin w end
in f3(y, v) end
else /> (v, z,y)
end
in f,(v,z,y) end
end
in f1() end

’r’

Parameter Dropping

If a parameter x is always instantiated with y or itself, then we can remove x and
replace all occurrences with y as long as it is in the scope of y.

/8

Parameter Dropping

Which parameters can be dropped?

function f1() =
letv=1,z=8, y=4
in function f,(v, z, y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3(y,v) =letw = y+ vin w end
in f3(y, v) end
else f>(v, z, y)
end
in f,(v,z,y) end
end
in f1() end

79

Parameter Dropping

Which parameters can be dropped?

function f1() =
letv=1, z=8, y=4
in function /> (v, z, y) =
letx =54y, y=xxz, x=x—1
inifx=0
then function f3() =letw = y+ vin w end
in f3() end

else f2(v, z, y)
end

in f>(v, z,y) end
end

in f1 () end

80

Parameter Dropping

function f1() =
letv=1, z=8, y=4
in function f>(y) =
letx=5+y, y=xxz, x=x—1
inifx=0
then function f3() =let w = y + v in w end
in f3() end

else f2(y)
end

in f>(y) end
end

in f1 () end

Minimal: only block arg is y and this does take on multiple values

81

