EECS 483: Compiler Construction

Lecture 04:
Conditionals

January 26, 2026

Announcements

- Assignment 1 is due on Friday, the 30th.
- Next assignment to be released on Monday, February 2nd.

Learning Objectives

Syntax and semantics for conditional expressions.
How conditional control flow is encoded in x86
How the instruction pointer is (implicitly) manipulated in x86

How to extend our Basic Block IR to an SSA IR with conditional
branching.

How to lower from conditional expressions to SSA IR

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling?
3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?

5

Snake v0.2: "Boa"

In Adder we developed straightline code that performed
arithmetic operations and stored variables and intermediate
results In memory.

In Boa, we extend this to include conditional and looping
control flow.

Snake v0.2: "Boa"

E@xpr ...
| (1] <expr> (:] <expr> [else:] <expr>

Abstract Syntax

enum Exp {

If { cond: Box<Exp>, thn: Box<Exp>, els: Box<Exp> }

¥

Examples, Semantics

We only have one datatype of integers, no separate booleans. We'll use C's
convention: O is false and everything else is true

Concrete Syntax Answer
1f 5: 6 else: 7 6
1T @: 6 else: 7]/

if subl(1l): 6 else: 7 7

Examples, Semantics

Again we have added if as an expression form (like Rust), so we need to handle
cases like

(if x: 6 else: 8) + (if y: x else: 3)

similar to C's ternary operatorx 7 6 : 8

For this reason, if expressions always have an else branch

10

Examples, Semantics

We want to ensure that our if expressions only evaluate one of the two branches
at runtime, and not both.

How would you test that you did this correctly? What kinds of programs would
behave differently if you always evaluated both branches?

if x: let x = 1 1n
print(1) 1T X:

else: /
orint(0) else:

infinite-Lloop

11

Scope

How should scoping extend to if expressions?

Should the following program be considered well scoped?

def main(x):
1T 0:

y
else:

X

12

Control Flow in x86

Assembly code doesn't have a primitive If construct. How do we express
conditional control flow?

13

x86 Instruction Semantics

So far, instructions execute in sequence. Why?

The instruction to execute Is determined by a special register, the instruction
pointer "rip".

IN our abstract machine, each execution step starts by interpreting the
memory at [rip] as a binary encoding of an assembly code instruction.

Most instructions (mov, add, etc) increment rip by the size of the encoded
iInstruction, meaning at the next step the instruction pointer will execute the
instruction after it in memory

What instruction have we seen so far that works differently?

14

x86 Instruction Semantics

So when we look at our code, we should
think of it as looking at that code laid out in

memory.

Assembly code labels give names to
memory addresses.

15

entry.:
mov rax,
sub rax,
cmp rax,
je thn
els:
mov rax,
ret
thn:
mov rax,
ret

—

rdli

x86 Instructions: mp

jmp loc
Semantics: sets the instruction pointer to loc.

Often loc is a label for another instruction in the same assembly file, but it
doesn't have to be, it can be a register, or a memory location, or even a
constant (almost certainly will crash in that case)

16

x86 Instructions: jcc Conditional Jump

jcc loc
Actually a family of instructions, where cc is a condition code

Semantics: sets rip to loc iIf the condition code is satisfied, otherwise
iIncrement rip like a sequential instruction.

17

x86 RFLAGS

The x86 abstract machine includes a register rflags, which like rip Is
manipulated as a side-effect of many instructions.

rflags is a 64-bit register, each bit acting as a boolean flag. Most of these are
irrelevant to our compiler (or unused). The most relevant to us are

- OF "overflow flag": 1 if an overflow occurs, otherwise O
- SF "sign flag": 1 if the output is negative, otherwise 0

- ZF "zero flag": 1 if the output is zero, otherwise 0

18

x86 RFLAGS

The x86 abstract machine includes a register rflags, which like rip Is
manipulated as a side-effect of many instructions.

mov does not affect flags

add, sub, imul, other arithmetic expressions do:

OF: 0
mov rax, 15 SF: 1
mov rcx, 17 /F: 0
sub rax, rcx

rax: =2

rcx: 17

19

x86 Instruction: cmp

Often we want to set rflags, but not actually store an arithmetic result:
cmp argl, arg2

"‘compare instruction". Behaves like sub for the purposes of setting flags, but
does not update arg1

OF: 0
mov rax, 15 SF: 1
mov rcx, 17 /F: 0
cmp rax, rcx

rax: 15

rcx: 17

20

x86 Instruction: test

Often we want to set rflags, but not actually store an arithmetic result:
test argl, argz

"test instruction”. Behaves like a bitwise and for the purposes of setting flags,
but does not update arg1. Useful for checking certain bits are set

21

x86 Condition codes

Condition codes interpret the flags as a boolean formula. Mnemonic makes the
most sense If we have just run a sub or cmp operation

- e (equal): ZF

- ne (hot equal): ~ ZF

- | (less than): OF A SF

- le (lesser or equal): (OF A SF) | ZF

- g (greater than): ~ le = ~ ((OF N SF) | ZF)

- ge (greater or equal): ~ | = ~ (OF N SF)

22

x86 Instructions: jcc

jcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets rip to loc if the condition code is satisfied, otherwise
iIncrement rip like a sequential instruction.

je loc
j le loc
]g loc

23

x86 Conditional Control Flow: Example

def main(x):
if sub1l(x):

else:

6

/

>

entry.:

mov
sub
cmp
jne
els:
mov
ret
thn:
mov
ret

rax,
rax,
rax,
thn

rax,

rax,

rdi

$

Updated x86 Abstract Machine

Directly manipulated

16 general purpose 64-bit registers
Byte addressable memory
Indirectly manipulated
RIP register
RFLAGS register
Execution mode:

while true { execute the instruction at [RIP] }

25

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling?
3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?

26

SSA

Previously:

one single block of operations ending in a return

compiled to a block of sequential assembly labeled entry, ending in a ret
Extend as follows:

add abllity to define additional labeled blocks called basic blocks

add ability to end a block by branching rather than returning

27

SSA Abstract Syntax

pub enum BlockBody {
Terminator(Terminator),
Operation {
dest: VarName,
op: Operation,
next: Box<BlockBody>,

}
SubBlock {
block: BasicBlock,
next: Box<BlockBody>,
}

28

pub struct BasicBlock {
pub label: Label,
pub body: BlockBody,

}

pub enum Terminator {
Return(Immediate),
ConditionalBranch {
cond: Immediate,
thn: Label,
els: Label,

I

SSA Concrete Syntax

entry(x):
thn:
ret 6
els:
ret /
subl _arg = X
cond = sub subl_arg 1
cbr cond thn els

Compiling Basic Blocks to x86

For each basic block, we will emit a block of assembly code with a label
corresponding to the name of the block.

Need to ensure that the sub-blocks are emitted after the instructions for the
current block.

Conditional branches can be encoded using a mix of x86 conditional jumps and
unconditional jJumps

30

Compiling Basic Blocks to x86

entry(x):

thn:
ret 6

els:
ret /

subl _arg = X

cond = sub subl_arg 1

cbr cond thn els

31

entry:

thn#0:

els#1:

nov
nov
nov
nov
nov
sub
mov
mov
cmp
jne
jmp

mov
ret

mov
ret

[rsp + -8], rdi
rax, [rsp + -8]
[rsp + =161, rax
rax, [rsp + -16]
rio, 1

rax, rilo

[rsp + =241, rax
rax, [rsp + -24]
rax, 0

thn#0

els#1

rax, o6

rax, /

Compiling Conditionals to (Sub-)blocks

entry(x):
def main(x): thn:
if sub1l(x): ret 6
ls:
6 e
."> ret /
else:
: subl _arg = X

cond = sub subl_arg 1
cbr cond thn els

Conditionals and Continuations

enum Exp {

IT { cond: Box<Exp>, thn: Box<Exp>, els: Box<Exp> }

¥

Strategy:

Make basic blocks for thn and els, giving them unique label names, compiling
them recursively

Compile cond, do a conditional branch on the result, using the label names
generated for thn and els

33

Compiling Conditionals to (Sub-)blocks

lf Cond: thn%sulid:
..« thn code
thn els%suid":
... els code
e-l-se: ..« Ccond code
cond result%suid'' = ...

els

cbr cond result%suid’'' thn%suid elsS%uid’

Conditionals and Continuations

This works if the result of the if expression is to be returned, but what if it's more
complex:

let x = (if y: 5 else: 6) 1in
X % 3

We need to also account for the continuation of the if expression!

The continuation is what should happen after the result of the expression is
computed. Now that result might be computed in either branch.

So the continuation needs to be run after either branch

35

Compiling Conditionals by Copying Continuations

1T cona:
thn%suild:
thn ... thn code
els%suld':
else: * ... els code
..« Ccond code
els cond result%suid'' = ...

T — e

cbr cond result%suid'' thn%uid els%suild'’

36

Compiling Conditionals by Copying Continuations

lf Cond . thn%suid:
... thn code
thn ... continuation code
els%suid':
else: . els code
* ... continuation code
e'LS ... cond code
cond result%suid'' = ...

T — e

cbr cond result%suid’'' thn%uid els%uid’

+

. continuation code

Compiling Conditionals by Copying Continuations

let x = (if y: 5 else: 6) in
X % 3

thn%0:
X%2 = 5
res%s3 = X%2 % 3
ret res%3

els%l:
X%4 = 6
res%3 = xX%4 x 3
ret res%3

cbr y%5 thn%0 els%l

>

38

Compiling Conditionals by Copying Continuations

Strategy:

Make basic blocks for thn and els, giving them unigue label names, compiling them
recursively

Compile cond, do a conditional branch on the result, using the label names
generated for thn and els

For continuations: copy them into both branches

But there's a problem!?

The strategy we've described today does create "correct” code.

Why is the strategy completely infeasible in practice?

39

Compiling Conditionals by Copying Continuations

let x = (if y: 5 else: 6) in
X % 3

thn%0:
X%2 = 5
res%s3 = X%2 % 3
ret res%3

els%l:
X%4 = 6
res%3 = xX%4 x 3
ret res%3

cbr y%5 thn%0 els%l

>

what's wrong with this approach?

40

Exponential Blowup in Copying Continuations

def main(y):
let x = 1f y: 5 else: 6 1n
let x = if y: x else: addl(x) in
let x = if y: x else: addl(x) in

thnae|

els23|

thnae|

X X X 2
If we copy the continuation each time we perform
an if, how many times does the
X * X e

thnae|

code appear in the generated ssa program?

condh? = yal

condsSd = y&i

41

Compiling Conditionals by Copying Continuations

Why is the strategy completely infeasible in practice?

Copying continuation: code size is exponential in the number of sequenced if-
expressions

Generated code should be usually be linear in the size of the input program
Most compiler passes should be linear in the size of the input program

certain program analyses are not linear, and dominate compilation time

42

Not Copying Continuations

def main(y):
let x = 1f y: 5 else: 6 1n
let x = if y: x else: addl(x) in
let x = if y: x else: addl(x) in

X X X

Copying the continuation is infeasible because it causes an exponential blowup in code
size.

But it does produce functionally correct code because it correctly identifies that the two
branches share the same continuation. The best we can do with our version of SSA.

Need to add something to SSA to allow us to express that two pieces of code share the
same continuation.

43

Join Points

How would we write this manually in assembly code without copying?

Make a new block and jump to that same block at the end of each of the
branches. This "shares"” the continuation without copying, using the fact that we
can copy the reference to the code, its label, for cheap.

44

Join Points

. entry:
def main(y): cmp rdi, ©
let x = (if y: 5 else: 6) in jne thn#o
X %k X jmp els#1l
B— ———— thn#0:

mov rax, 5

* jmp jn#2
els#1:

mov rax, o
jmp Jn#2

JN#2:
imul rax, rax
ret

45 T —

Join Points

How can we extend our IR to express join points?
Join points are just a new kind of block?
- Make a block for the join point

- Add a new uncdonditional branch, like an assembly jmp to our IR.

46

Join Points

def main(y):
let x = (if y: 5 else: 6) in
X * X

>

Our ordinary blocks aren't enough: Join points aren't just code
blocks, they are continuations. We don't just need to execute

*

X X

We also need to assign to x differently depending on the branch

47

entry(y%0):
JN#2:
.7
result%s4d = x%1 *x x%1
ret result%4
thn#0:
thn_res%6
cun?
br jn#2
els#1:
els res%/ = 6
cun?
br jn#?2
cond%5 = y%0
cbr cond%5 thn#0 els#1l

Il
U

Solution 1: Assign to x in both branches

entry(y%0) :
def main(y): jn#2:
let x = (if y: 5 else: 6) 1in result%s4 = x%1 * X%l
X % X ret result%4
T T thn#0:

X%l = 5

* br jn#2

Pros: easy to generate assembly code els#1:

X%l = 6
Con: breaks the "static single assignment property’ br jn#2
It's not clear in the join point where x is defined, makes cond%5 = y%0

program analysis, optimization much harder cbr cond%s5 thn#0 els#1l

48 TTT— —

Solution 2: d nodes

deT main(y) . entry(y%0):

B Jn#2:
let x = (lf y: > else: 6) 10 X%l = ¢(thn_res%s6, els_res%7)

X %k X result%s4 = x%1 *x X%1
. —— ret result%4
thn#0:
* thn_res%6
br jn#2
els#1:
els res%/
br jn#?2
cond%5 = y%0
cbr cond%s5 thn#0 els#1l

[l
U

[l
o)

49

Solution 2: d nodes

A ¢ node is a "¢pony" operation that allows SSA format to express join points
without breaking the SSA property.

X = ¢(x1,x2,X3,...)

The semantics is a little strange...The ¢ node is an assignment to x, but which
variable it assigns depends on where we just branched from.

¢ nodes require some syntactic restrictions:
they can only appear at the beginning of a basic block (so that we just branched).

need to make sure that the variables on the rhs are actually defined before they
reach the ¢ node.

need to pick some kind of ordering, so we actually know which variable
corresponds to which branch

Solution 2: d nodes

A ¢ node is a "¢pony" operation that allows SSA format to express join points
without breaking the SSA property.

X = ¢(x1,x2,X3,...)

Pros: maintains the SSA property, popular in SSA literature, used in long-
established industrial SSA-based compilers (LLVM, GCC, Hotspot)

Cons: strange semantics, strange code generation (the move happens in the
predecessor block!), difficult to enforce syntactic restrictions

Solution 3: Parameterized Blocks

aet main(y):. | entry(y%0) :
let x = (if y: 5 else: 6) in in#t2 (x%1) :

X Xk X result%s4d = x%1 *x x%1
T ret result%4
thn#0 () :

* br jn#2(5)
_ _ | | els#1():
Represent the continuation directly in the syntax: a br jn#2(6)

block can have parameters just like a continuation
has an input variable.

cond%5 = y%0
cbr cond%s5 thn#0() els#1()

Directly allow us to turn continuations into blocks

52

¢ Nodes vs Parameterized Blocks

A parameterized block adds "arguments” to our basic blocks

1(x1,x2,x3):
These arguments are like other variables, they are in scope for the block, but not outside of it.
Branching to a parameterized block means providing arguments to it

br 1(y1,y2,y3)

Pros: maintains the SSA property, simple code generation, simple well-formedness condition,
used in newer SSA-based compilers (Swift, MLIR, MLton)

Cons: separates the different join points syntactically in the SSA program, need to translate
most SSA papers from phi hode notation

¢ Nodes vs Parameterized Blocks

entry(y%0):
jn#2: entry(y%0):
x%1 = ¢(thn_res%s6, els_res%7) in#2(x%1):
result%sd = x%1 x x%1 result%s4 = x%1 * X%1
ret result®4 ret result%4
th:ﬁg:res%6 = 5 thn¥ol):
t”_gh#z br jn#2(5)
als# : els#1():
els_res%/7 = 6 br jn#2(6)
br jn#2 cond%5 = y%0
cond%5 = y%0 cbr cond%5 thn#0() els#1()

cbr cond%5 thn#0 els#1

¢ nodes put assignment in the block itself, parameterized
blocks put the "asignment in the predecessor

Control Flow Graph

We can visualize SSA programs using control-flow graphs.

entry(y%5): cbr y thn els
thn0: [////// \\\\\\
X%2 = 5

res%3 = x%2 *x X%2 thn els
ret res%%3 X = 2 X =
els%1: Fres = X X X res = X xk X
ot ret res ret res
X%4 = 6
res%s3 = X%4 x X%4
ret res%3 Nodes of CFG: basic blocks

cbr y%5 thn%0 els%l edges are branches

55

Control Flow Graph

We can visualize SSA programs using control-flow graphs.
Join point: multiple predecessors

. entry
en‘Fry(yoG)- cbr y thn els
jn#2(x%1) :
result%sd = x%1 *x X%l /////// \\\\\\

ret result%4
thn#0 () :

br jn#2(5)
els#1():

br jn#2(6)
cond%5 = y%0 jn(x)

cbr cond%5 thn#0() els#1() res = X % X
— — ret res

56

Control Flow Graph

Join points are needed to express sharing. Conditional code like our source
produces a DAG. DAGs can be simulated with trees, but with an exponential blowup!

entry

cbr y thn els \\\\\
////// \\\\\ thn els
thn els jn(5) jn(6)

X = 5 X = 6
res = X x X res = X *x X \ /

jn(x)

ret res ret res

res = X %k X
ret res

57

Control Flow Graph

A common way to think about SSA programs is in terms of control-flow
graphs.

With branching, but no join points, we can express control-flow trees.

Join points allow us to express control-flow DAGs which can be exponentially
more compact than trees.

If we remove the acyclicity requirement, we can express loops and even more
exotic control flow. Revisit this next week

58

