EECS 483: Compiler Construction

Lecture 3:
Complex Expressions, Evaluation Order, Basic Blocks, Continuations

January 21, 2025

Announcements

- Assignment 1 is due next Friday, the 30th. Should get through all
relevant material today.

- Office Hours reminder:
Max: Monday and Thursday 3-4.30pm, Beyster 4628
Yuchen: Wed 3-4pm, Friday 1:30-2:30pm, Beyster Atrium

Learning Objectives

- Finish Simple Allocation scheme for local variables
- Address semantic questions in multi-argument operations

- How to compile nested recursive expressions to sequential assembly
code

- Introduce the first version of our intermediate representation

Compiling Let

In the interpreter, the value of each variable was stored in a HashMap.

In the compiled code, we correspondingly need to ensure that we have access
to the value of each variable somewhere in memory

x86 Memory Model

16 general-purpose 64-bit reqgisters
- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15

Each holds a 64-bit value, so 128 bytes of extremely fast memory.

The abstract machine also gives us access to a large amount of memory, which
IS addressable by byte.

- Addresses are 64-bit values, though in current hardware only the lower 48-bits
are used. This gives us access to 2748 bytes of address space, or 128

terabytes.

x86 Instructions: mov

mov dest, src
In a2 mov, the dest and src can be registers or memory addresses.
Use square brackets [| to "dereference"” an address.
* mov rax, rdi copies the value stored in rdi to rax
* mov rax, [rdi] loads the memory at address rdi into rax
* mov [rax], rdi stores the value of rdi in the memory at address rax

 mov [rax], [rdi] - not allowed in x86 syntax

We access the stack using the "stack
pointer” rsp.

The calling convention dictates that
when a function iIs called, the stack
pointer

1. Points to the return address of the
caller

2. Lower memory addresses are free for
the callee to use

3. Higher memory addresses are owned
by the caller

x86 Memory Conventions

Free/Callee

rsp —

Used/Caller

Stack

Return Address

We use the free space on the stack to
store our local variables

let a = 7 1n

let b = 13 1n

let x = addl(a) in
add1(x)

x86 Memory Conventions

Free/Callee
rsp — 8 x 3
rsp — 8 x 2
rsp — 8 x 1
rsp —

Used/Caller

Stack

X: 8

b: |3

a: /

Return Address

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let x = 10 /* [] *x/
in add1(x) /* [Xx —> 1] %/

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let x = 10 /* [] */
in let y = addl(x) /% [x —> 1] %/
in let z = addl(y) /x [y — 2, x ——> 1] x/
in add1(z) /¥ [z —> 3, vy — 2, x —> 1] %/

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let a = 10 /* [] %/
in let ¢ = let b = add1(a) /x [a —> 1] %/
in let d = add1(b) /% [b ——> 2, a —> 1] */
in addl(b) /¥ [d —> 3, b —> 2, a —> 1] */
in addl(c) / [c ——> 4, d —> 3, b —> 2, a —> 1] */
Wasteful?

When a variable goes out of scope, its value is no longer needed

12

Compiling Let

Only need to ensure that the memory locations are unique relative to the other
variables that are currently in scope

let a = 10 /% [] %/
in let c = let b = addl(a) /x [a —> 1] %/
in let d = add1(b) /% [b —> 2, a —> 1] x/
in add1(b) /¥ [d —> 3, b —> 2, a —> 1] %/
in addl(c) /* [c —> 2, a —> 1] %/

How can you implement this in code? Again: designing the right kind of
environment Is the key

13

Code Generation for Let

let x = 10 mov rax, 10
in add1(x) mov [rsp - 8x1], rax
mov rax, lrsp — 8%1]
add rax, 1

expressions store their result in rax
let bindings store rax on stack

variable lookups load from stack to rax

1n

1n

let a
let c

add1(c)

10

let b =
in let d =
in add1(b)

add1(a)
add1(b)

mov
mov
mov
add
mov
mov
add
mov
mov
add
mov

mov
add

rax, 10

[rsp — 8%1], rax
rax, [rsp — 8x1]
rax, 1

[rsp — 8%2], rax
rax, [rsp — 8x2]
rax, 1

[rsp — 8%3], rax
rax, [rsp — 8x%x2]
rax, 1

[rsp — 8%2], rax
rax, [rsp — 8x2]

rax, 1

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

16

Snake v0.1: "Adder"

Today: Finish Adder by adding binary arithmetic operations

Snake v0.1: "Adder"

prog>: (def|(main| (| IDENTIFIER ()|(:]<expr>

Eexpr:
| NUMBER

| ADD1 (] <expr>

| SUB1 (] <expr>

(=~ =)
=) =)

| IDENTIFIER
| LET IDENTIFIER EQ <expr> IN <expr

| <expr> (+] <expr>
| <expr> (-] <expr>
| <expr> (x| <expr>

| ((] <expr>)]

18

Abstract Syntax

enum Prim A
Add1l,
Subl,
Add,
Sub,
Mul,

h

enum Expression {

Prim(Prim, Vec<Expression>),

}
no constructor for parentheses

19

Precedence

Parser uses precedence rules (PEMDAS) to produce an AST

(2 — 3) + 4 x 5
(2 = 3) + (4 % 5)

both parse into the same AST:

Prim(Add,
[Prim(Sub, [Number(2), Number(3)]),
Prim(Mul, [Number(4), Number(5)])])

20

Semantics

In an expression €1 op e2, do we evaluate e1 and then e2 or
vice-versa?

Does it make a difference in Adder?

Does it make a difference in realistic extensions of Adder?

print(6) x print(7)

21

Compiling Binary Operations

Why is compiling binary operations more complex than unary?

Compiling Binary Operations

Why is compiling binary operations more complex than unary?

Recall: current strategy is to store intermediate results in rax

((4 - 3) —2) x5

mov
sub
sub
mu L

rax,
rax,
rax,
rax,

OO NN W B

Compiling Binary Operations

(2 - 3) + (4 x 5) mov rax, 2
sub rax, 3
2272727

compound expressions have implicit intermediate results

solution: translate to a form where these intermediate results are explicit, and
operations are only ever applied to immediate expressions (constants/variables)

let first = 2 - 3 1n
let second =4 x 5 1n
first + second

24

Intermediate Representation

We add a new pass lowering our AST into an intermediate representation.
An Intermediate representation is a language used internally in the compiller.

Typically, humans don't write programs in the intermediate representation directly,
only generated by compiler passes.

Intermediate representation should be "closer” to our target language but abstract
over the complexities of assembly code.

The same IR can be used to translate to different backends, with common
optimizations and transformations.

25

Static Single Assignment v1: Basic Blocks

The intermediate representation we use in this course is called Static Single
Assignment (SSA).

For Adder, we only need a fragment of SSA: we will compile the source to a single
basic block.

26

Static Single Assignment v1: Basic Blocks

SSA programs aren't written by humans so they don't need a "concrete syntax”

but to make debugging easier, we will print SSA programs in the style shown below:

entry(x):
y = add 2 X
Z = sub 18 3

wW=mul y z
ret w

Static Single Assignment v1: Basic Blocks

eI t ry (X) Differences from

Assembly:
1. No left-nesting of let y — add 2 X > g

Differences from Snake:

bindings 1. Immutable local
— variables, no
2. Arguments are immediate Z SU b 1 8 3 registers/memory
values, not complex - distinction
expressions w = Mu -l. y V4

2. Calling convention is
3. Ends in explicit return ret W abstract

28

Static Single Assignment v1: Basic Blocks

Live code: AST for SSA

Static Single Assignment v1: Basic Blocks

Summary:
1. An SSA program consists of an entry point, a parameter and a block

2. A block Is a sequence of primitive operations performed on immediately
available values (variables or numbers) ending in a return statement.

3. Variables in SSA are immutable, just like our source language.

4. All bound variables in SSA should be globally unigue.

30

Static Single Assignment v1: Basic Blocks

Now we've reduced the compilation to two tasks:
1. "Lowering" our AST into an SSA program

2. Producing x86 assembly from an SSA program

31

SSA to x86

Since SSA is essentially a simplified version of Adder, we can apply the same
techniques for generating assembly code from SSA. The only extension is that we
need to handle binary primitives.

32

SSA to x86

entry(x):

y =
7 =
W =

add 2 X

sub 18 3
mul y z

ret w

33

3 entry(x):

mov [rsp - 8], rdi

;3 Y = add 2 X

mov rax, 2

mov r1@, [rsp - 8]

add rax, rilo

mov [rsp — 16], rax
sy 2 = sub 18 3

mov rax, 18

mov rlo, 3

sub rax, ril0

mov [rsp - 24], rax
3 W =mul y z

mov rax, [rsp - 16]
mov r1@, [rsp — 24]
imul rax, rleo

mov [rsp — 32], rax
y, ret w

mov rax, [rsp - 32]
ret

Adder to SSA

(2 = 3) + (4 % 5)

X0 = 2
x1 = 3
X2 = sub x0 x1
X3 = 4
x4 = 5
X5 = mul x3 x4
X6 = add x2 x5
ret X6

34

How to produce this code
compositionally?

Observation: Each line corresponds
to a different subexpression

Observation: A deeply nested
subexpression 2 is the top of the
AST in the output. We are converting
a tree into a linked list using a
'postorder” traversal

Adder to SSA @

(2

3) + (4 % 5) @ @
ojolole

X0 = 2

X1 =3

e OLOLONONOL020
X3 = 4

X4 =5

X5 = mul X3 x4 solution: when compiling a sub-expression, we take "what

X0 = add x2 x5 code to run after" as an argument

ret xo

"what to run after” is called the continuation of the expression

35

Adder to SSA

Live Code

Adder to SSA

Summary:

Translate Adder to SSA using continuation-passing style: expression lowering
function is parameterized by a continuation consisting of

1. the name of the destination variable for the result.

2. a block of code to run after the compiled code places the result in the
destination.

Need to generate unique names in this process to make sure that the generated
variable names are all distinct and distinct from the original program variables

37

