
January 21, 2025

EECS 483: Compiler Construction
Lecture 3:
Complex Expressions, Evaluation Order, Basic Blocks, Continuations

1

Announcements

2

- Assignment 1 is due next Friday, the 30th. Should get through all
relevant material today.

- Office Hours reminder:

Max: Monday and Thursday 3-4:30pm, Beyster 4628

Yuchen: Wed 3-4pm, Friday 1:30-2:30pm, Beyster Atrium

Learning Objectives

3

- Finish Simple Allocation scheme for local variables

- Address semantic questions in multi-argument operations

- How to compile nested recursive expressions to sequential assembly
code

- Introduce the first version of our intermediate representation

Compiling Let

4

In the interpreter, the value of each variable was stored in a HashMap.

In the compiled code, we correspondingly need to ensure that we have access
to the value of each variable somewhere in memory

x86 Memory Model

5

16 general-purpose 64-bit registers

- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15

Each holds a 64-bit value, so 128 bytes of extremely fast memory.

The abstract machine also gives us access to a large amount of memory, which
is addressable by byte.

- Addresses are 64-bit values, though in current hardware only the lower 48-bits
are used. This gives us access to 2^48 bytes of address space, or 128
terabytes.

x86 Instructions: mov

6

 mov dest, src

In a mov, the dest and src can be registers or memory addresses.

Use square brackets [] to "dereference" an address.

• mov rax, rdi copies the value stored in rdi to rax

• mov rax, [rdi] loads the memory at address rdi into rax

• mov [rax], rdi stores the value of rdi in the memory at address rax

• mov [rax], [rdi] - not allowed in x86 syntax

x86 Memory Conventions

7

We access the stack using the "stack
pointer" rsp.

The calling convention dictates that
when a function is called, the stack
pointer

1. Points to the return address of the
caller

2. Lower memory addresses are free for
the callee to use

3. Higher memory addresses are owned
by the caller

rsp Return Address

Free/Callee

Used/Caller

Stack

x86 Memory Conventions

8

rsp

x: 8

b: 13

a: 7

Return Address

Free/Callee

Used/Caller

Stack

let a = 7 in
let b = 13 in
let x = add1(a) in
add1(x)

We use the free space on the stack to
store our local variables

rsp - 8 * 3
rsp - 8 * 2
rsp - 8 * 1

Compiling Let

9

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

10

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

11

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

12

To compile our code, we need to establish a mapping of variable names to
memory locations

Wasteful?
When a variable goes out of scope, its value is no longer needed

Compiling Let

13

Only need to ensure that the memory locations are unique relative to the other
variables that are currently in scope

How can you implement this in code? Again: designing the right kind of
environment is the key

Code Generation for Let

expressions store their result in rax

let bindings store rax on stack

variable lookups load from stack to rax

Compiling Let

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

16

Snake v0.1: "Adder"

17

Today: Finish Adder by adding binary arithmetic operations

Snake v0.1: "Adder"

18

Abstract Syntax

19

no constructor for parentheses

Precedence

20

Parser uses precedence rules (PEMDAS) to produce an AST

both parse into the same AST:

Semantics

21

In an expression e1 op e2, do we evaluate e1 and then e2 or
vice-versa?

Does it make a difference in Adder?

Does it make a difference in realistic extensions of Adder?

Compiling Binary Operations

22

Why is compiling binary operations more complex than unary?

Compiling Binary Operations

23

Why is compiling binary operations more complex than unary?

Recall: current strategy is to store intermediate results in rax

Compiling Binary Operations

24

compound expressions have implicit intermediate results

solution: translate to a form where these intermediate results are explicit, and
operations are only ever applied to immediate expressions (constants/variables)

Intermediate Representation

25

We add a new pass lowering our AST into an intermediate representation.

An intermediate representation is a language used internally in the compiler.

Typically, humans don't write programs in the intermediate representation directly,
only generated by compiler passes.

Intermediate representation should be "closer" to our target language but abstract
over the complexities of assembly code.

The same IR can be used to translate to different backends, with common
optimizations and transformations.

Static Single Assignment v1: Basic Blocks

26

The intermediate representation we use in this course is called Static Single
Assignment (SSA).

For Adder, we only need a fragment of SSA: we will compile the source to a single
basic block.

Static Single Assignment v1: Basic Blocks

27

SSA programs aren't written by humans so they don't need a "concrete syntax"

but to make debugging easier, we will print SSA programs in the style shown below:

Static Single Assignment v1: Basic Blocks

28

Differences from Snake:

1. No left-nesting of let
bindings

2. Arguments are immediate
values, not complex
expressions

3. Ends in explicit return

Differences from
Assembly:

1. Immutable local
variables, no
registers/memory
distinction

2. Calling convention is
abstract

Static Single Assignment v1: Basic Blocks

29

Live code: AST for SSA

Static Single Assignment v1: Basic Blocks

30

Summary:

1. An SSA program consists of an entry point, a parameter and a block

2. A block is a sequence of primitive operations performed on immediately
available values (variables or numbers) ending in a return statement.

3. Variables in SSA are immutable, just like our source language.

4. All bound variables in SSA should be globally unique.

Static Single Assignment v1: Basic Blocks

31

Now we've reduced the compilation to two tasks:

1. "Lowering" our AST into an SSA program

2. Producing x86 assembly from an SSA program

SSA to x86

32

Since SSA is essentially a simplified version of Adder, we can apply the same
techniques for generating assembly code from SSA. The only extension is that we
need to handle binary primitives.

SSA to x86

33

Adder to SSA

34

x0 = 2
x1 = 3
x2 = sub x0 x1
x3 = 4
x4 = 5
x5 = mul x3 x4
x6 = add x2 x5
ret x6

How to produce this code
compositionally?

Observation: Each line corresponds
to a different subexpression

Observation: A deeply nested
subexpression 2 is the top of the
AST in the output. We are converting
a tree into a linked list using a
"postorder" traversal

Adder to SSA

35

x0 = 2
x1 = 3
x2 = sub x0 x1
x3 = 4
x4 = 5
x5 = mul x3 x4
x6 = add x2 x5
ret x6

+

- *

2 3 4 5

+- *2 3 4 5

solution: when compiling a sub-expression, we take "what
code to run after" as an argument

"what to run after" is called the continuation of the expression

Adder to SSA

36

Live Code

Adder to SSA

37

Summary:

Translate Adder to SSA using continuation-passing style: expression lowering
function is parameterized by a continuation consisting of

1. the name of the destination variable for the result.

2. a block of code to run after the compiled code places the result in the
destination.

Need to generate unique names in this process to make sure that the generated
variable names are all distinct and distinct from the original program variables

