
January 21, 2025

EECS 483: Compiler Construction
Lecture 3:  
Complex Expressions, Evaluation Order, Basic Blocks, Continuations
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Announcements
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- Assignment 1 is due next Friday, the 30th. Should get through all 
relevant material today.

- Office Hours reminder:


Max: Monday and Thursday 3-4:30pm, Beyster 4628

Yuchen: Wed 3-4pm, Friday 1:30-2:30pm, Beyster Atrium



Learning Objectives
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- Finish Simple Allocation scheme for local variables

- Address semantic questions in multi-argument operations

- How to compile nested recursive expressions to sequential assembly 
code

- Introduce the first version of our intermediate representation



Compiling Let
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In the interpreter, the value of each variable was stored in a HashMap.


In the compiled code, we correspondingly need to ensure that we have access 
to the value of each variable somewhere in memory



x86 Memory Model
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16 general-purpose 64-bit registers


- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15


Each holds a 64-bit value, so 128 bytes of extremely fast memory.


The abstract machine also gives us access to a large amount of memory, which 
is addressable by byte. 


- Addresses are 64-bit values, though in current hardware only the lower 48-bits 
are used. This gives us access to 2^48 bytes of address space, or 128 
terabytes.



x86 Instructions: mov
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 mov dest, src


In a mov, the dest and src can be registers or memory addresses.


Use square brackets [  ]  to "dereference" an address.


• mov rax, rdi copies the value stored in rdi to rax


• mov rax, [rdi] loads the memory at address rdi into rax


• mov [rax], rdi stores the value of rdi in the memory at address rax


• mov [rax], [rdi] - not allowed in x86 syntax



x86 Memory Conventions
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We access the stack using the "stack 
pointer" rsp.


The calling convention dictates that 
when a function is called, the stack 
pointer


1. Points to the return address of the 
caller


2. Lower memory addresses are free for 
the callee to use


3. Higher memory addresses are owned 
by the caller

rsp Return Address

Free/Callee

Used/Caller

Stack



x86 Memory Conventions
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rsp

x: 8

b: 13

a: 7

Return Address

Free/Callee

Used/Caller

Stack

let a = 7 in 
let b = 13 in 
let x = add1(a) in 
add1(x)

We use the free space on the stack to 
store our local variables

rsp - 8 * 3
rsp - 8 * 2
rsp - 8 * 1



Compiling Let
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To compile our code, we need to establish a mapping of variable names to 
memory locations



Compiling Let
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To compile our code, we need to establish a mapping of variable names to 
memory locations



Compiling Let
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To compile our code, we need to establish a mapping of variable names to 
memory locations



Compiling Let
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To compile our code, we need to establish a mapping of variable names to 
memory locations

Wasteful?
When a variable goes out of scope, its value is no longer needed



Compiling Let
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Only need to ensure that the memory locations are unique relative to the other 
variables that are currently in scope

How can you implement this in code? Again: designing the right kind of 
environment is the key



Code Generation for Let

expressions store their result in rax


let bindings store rax on stack


variable lookups load from stack to rax



Compiling Let



Extending the Snake Language

When we implement a compiler (to assembly) we need to 
address the following questions:


1. What is the syntax of the language we are compiling?


2. What is the semantics of the language we are compiling?


3. How can we implement that semantics in assembly code?


4. How can we generate that assembly code 
programmatically?
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Snake v0.1: "Adder"
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Today: Finish Adder by adding binary arithmetic operations



Snake v0.1: "Adder"
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Abstract Syntax
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no constructor for parentheses



Precedence
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Parser uses precedence rules (PEMDAS) to produce an AST

both parse into the same AST:



Semantics
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In an expression e1 op e2, do we evaluate e1 and then e2 or 
vice-versa?

Does it make a difference in Adder?

Does it make a difference in realistic extensions of Adder?



Compiling Binary Operations
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Why is compiling binary operations more complex than unary?



Compiling Binary Operations
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Why is compiling binary operations more complex than unary?


Recall: current strategy is to store intermediate results in rax



Compiling Binary Operations
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compound expressions have implicit intermediate results


solution: translate to a form where these intermediate results are explicit, and 
operations are only ever applied to immediate expressions (constants/variables)



Intermediate Representation
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We add a new pass lowering our AST into an intermediate representation.


An intermediate representation is a language used internally in the compiler.


Typically, humans don't write programs in the intermediate representation directly, 
only generated by compiler passes.


Intermediate representation should be "closer" to our target language but abstract 
over the complexities of assembly code.


The same IR can be used to translate to different backends, with common 
optimizations and transformations.



Static Single Assignment v1: Basic Blocks
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The intermediate representation we use in this course is called Static Single 
Assignment (SSA).


For Adder, we only need a fragment of SSA: we will compile the source to a single 
basic block.



Static Single Assignment v1: Basic Blocks
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SSA programs aren't written by humans so they don't need a "concrete syntax"


but to make debugging easier, we will print SSA programs in the style shown below:



Static Single Assignment v1: Basic Blocks
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Differences from Snake:


1. No left-nesting of let 
bindings


2. Arguments are immediate 
values, not complex 
expressions


3. Ends in explicit return

Differences from 
Assembly:


1. Immutable local 
variables, no 
registers/memory 
distinction


2. Calling convention is 
abstract



Static Single Assignment v1: Basic Blocks
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Live code: AST for SSA



Static Single Assignment v1: Basic Blocks
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Summary:


1. An SSA program consists of an entry point, a parameter and a block


2. A block is a sequence of primitive operations performed on immediately 
available values (variables or numbers) ending in a return statement.


3. Variables in SSA are immutable, just like our source language.


4. All bound variables in SSA should be globally unique.



Static Single Assignment v1: Basic Blocks
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Now we've reduced the compilation to two tasks:


1. "Lowering" our AST into an SSA program


2. Producing x86 assembly from an SSA program



SSA to x86
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Since SSA is essentially a simplified version of Adder, we can apply the same 
techniques for generating assembly code from SSA. The only extension is that we 
need to handle binary primitives.



SSA to x86
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Adder to SSA
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x0 = 2 
x1 = 3 
x2 = sub x0 x1 
x3 = 4 
x4 = 5 
x5 = mul x3 x4 
x6 = add x2 x5 
ret x6

How to produce this code 
compositionally?


Observation: Each line corresponds 
to a different subexpression


Observation: A deeply nested 
subexpression 2 is the top of the 
AST in the output. We are converting 
a tree into a linked list using a 
"postorder" traversal



Adder to SSA
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x0 = 2 
x1 = 3 
x2 = sub x0 x1 
x3 = 4 
x4 = 5 
x5 = mul x3 x4 
x6 = add x2 x5 
ret x6

+

- *

2 3 4 5

+- *2 3 4 5

solution: when compiling a sub-expression, we take "what 
code to run after" as an argument


"what to run after" is called the continuation of the expression



Adder to SSA
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Live Code



Adder to SSA
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Summary:


Translate Adder to SSA using continuation-passing style: expression lowering 
function is parameterized by a continuation consisting of


1. the name of the destination variable for the result.


2. a block of code to run after the compiled code places the result in the 
destination.


Need to generate unique names in this process to make sure that the generated 
variable names are all distinct and distinct from the original program variables


