EECS 483: Compiler Construction

Lecture 2:
Variables, Scope and Stack Allocation

January 14, 2025

Announcements

- First homework assignment is released. Due on the 30th.

Some material will be covered in next week's class, but can get
started on parts of it after today's lecture

This week's discussion will go over the infrastructure in the starter
code.

- No class on Monday for MLK Day

Learning Objectives

1. Specify correct usage of variable names in Snake

2. Common pitfalls with variable name implementation and how to
avolid them

3. Semantics and interpreter for programs with local variables
4. Compilation of local variables to stack storage

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

Snake v0.1: "Adder"

Today: add immutable variables to Adder, to allow saving
results of intermediate computations

Snake v0.1: "Adder"

<prog>: (def|main||(] IDENTIFIER ()| colon|<expr>

Eexpr:
' NUMBER

 [add1] (] <expr> ()
 [subl]{(] <expr>[)

| IDENTIFIER

| [Let| IDENTIFIER (=) <expr> [in) <expr

Examples

def main(x):
let y = subl(x) in
let z = add1(add1(y)) in
add1(z)

Examples

def main(x):
let z =
let y = subl(x) in
add1(add1(y)) in
add1(z)

Let is an expression form, just like add1 and sub™

Examples

def main(x):
let z = addl(addl(let y = subl(x) in y)) 1in
add1(z)

Let is an expression form, just like add1 and sub™

Expressions vs Statements

In most languages in the C style, variable bindings belong to a separate
syntactic class of statements.

In languages with a functional programming style, it is more common to allow
most syntactic constructs.

Rust i1Is somewhere In the middle
fn funny(x: 164) —> 164 {

let z = {
add1(add1({
def main(x): let y = subl(x);
let z = add1l(add1l(let y = subl(x) in y)) in y
add1(z) 1))
i
add1(z)

10

def main(x):
Yy

Does this example match our grammar?

Should it be considered a valid program?

11

Compiler Frontends

Even after parsing, there are some conditions on the syntax that still remain to

be checked. This is inherent: to be implemented efficiently, parsers use
computationally restrictive languages that are not capable of performing all of

the semantic analysis necessary to check if the input program is valid

Compiler Frontend

validated
AST

>

input Lexical * Syntactic » Semantic
string Analysis Analysis Analysis

12

Semantic Analysis

Examples:

- Scope checking (today)
- Type checking
- Borrow checking

EECS 490 covers type checking in more detail.

13

Free and Bound Variables

def main(x):
Yy

We say this program is invalid because the vy is a free variable, meaning it has
not been defined

Free and Bound Variables

binding site
def main(Xx):
X

bound variable

The usage of x here is valid because it occurs within the scope of a binding site
that binds the variable name x. We call such a usage a bound variable

15

Free and Bound Variables

def main(x):

let y =
let z = x in addl(y)
1n
let w = subl(x) in
subl(z)

There are 8 variables in this program. Which ones are binding sites, which ones
are free variables and which ones are bound variables?

Live Code: Scope Checking

To define scope rigorously, let's define a scope checker in Rust.

Variable Names are Tricky

We use variable names as a way to refer back to binding sites. But because
names are implemented as strings, sometimes the same name is used to refer
to multiple binding sites.

def main(y):

let x =
let x = subl(y)
in add1l(x)

in addl(addl(x))

18

Variable Names are Tricky

We use variable names as a way to refer back to binding sites. But because
names are implemented as strings, sometimes the same name is used to refer
to multiple binding sites.

def main(y):

let x =
let X>=_subl(y)
in add1(Xx)

in addl(addl(x))

19

Shadowing

Should this be allowed?

We say the second binding shadows the first
let x = 1 1n
let _x = 2 1n

X

If a binding Is shadowed, it's impossible to refer to it in the source program!

20

Live Code: Interpreter

Now let's define the semantics of our language rigorously by defining an
iInterpreter in Rust.

21

Beta Reduction

A common rewrite we can apply to our ASTs is called beta reduction

let X = el 1n e2

rewrites to

e2

with all occurrences of x replaced by ef

22

Beta Reduction

let Xx =y 1n
let z = add1(x) in
add1(add1(z))

rewrites to

let z = add1(y) in
add1(add1(z))

Beta Reduction

Is there any situation where this rewrite is not correct? l.e., where the two
different expressions have different behaviors?

let X = el 1n e2

rewrites to

e2

with all occurrences of x replaced by ef

24

Beta Reduction

Is there any situation where this rewrite is not correct? l.e., where the two
different expressions have different behaviors?

def main(y):
let x =y 1n
let yi= 17 1n
add1(x)

we say that the inner binding of y has captured the occurrence of y on the
iInside

def main(y):
let y = 17 1n
add1(y)

25

Unique Variable names

Shadowing is convenient for programmers, but ultimately harmful to compilers.
For this reason compilers typically implement a variable renaming phase that
makes sure that all binding occurrences are globally unique

def main(y#9) :
let xX#0 = y#0 1n
let y#1 = 17 in
addl(x#0)

Ensuring that all variables are uniqgue ensures we can move code around
without worrying about capture.

def main(y#0):
let y#1/= 17 in
add1(y#09)

26

Compiling Let

In the interpreter, the value of each variable was stored in a HashMap.

In the compiled code, we correspondingly need to ensure that we have access
to the value of each variable somewhere in memory

27

x86 Memory Model

16 general-purpose 64-bit reqgisters
- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15

Each holds a 64-bit value, so 128 bytes of extremely fast memory.

The abstract machine also gives us access to a large amount of memory, which
IS addressable by byte.

- Addresses are 64-bit values, though in current hardware only the lower 48-bits
are used. This gives us access to 2748 bytes of address space, or 128

terabytes.

28

x86 Instructions: mov

mov dest, src
In a2 mov, the dest and src can be registers or memory addresses.
Use square brackets [| to "dereference"” an address.
* mov rax, rdi copies the value stored in rdi to rax
* mov rax, [rdi] loads the memory at address rdi into rax
* mov [rax], rdi stores the value of rdi in the memory at address rax

 mov [rax], [rdi] - not allowed in x86 syntax

29

x86 Instructions: mov

mov dest, src
In a mov, the dest and src can be registers or memory addresses.
Addresses can be not just registers, but offsets from registers

mov rax, [rsp - 8 * 3]

30

x86 Memory Conventions

Registers give us access to 128 bytes, and byte-addressable memory gives us
access to 128 terabytes.

But that memory needs to be shared by different components of the process
(functions, objects, allocator, garbage collector, etc).

We can't just start writing to a random portion of memory

1. That memory might be used by another component, like our caller, and we
would break the invariants of that component

2. Hardware supports mechanisms for process isolation, so most of the memory
space will be invalid for us to access, causing the dreaded segmentation fault

31

x86 Memory Conventions *| Code |

Memory Iin Xx86 processes is divided
iInto 4 portions

. H
1. Read-only memory containing the S
source code. (.text section)
2. Globals
3. Heap
Stack

4. The call Stack

High

32

x86 Memory Conventions Stack

We access the stack using the "stack

pointer” rsp.

Free/Callee

The calling convention dictates that

when a function iIs called, the stack

pointer

1. Points to the return address of the

caller rsp = Return Address

2. Lower memory addresses are free for

the callee to use

Used/Caller

3. Higher memory addresses are owned

by the caller

33

We use the free space on the stack to
store our local variables

let a = 7 1n

let b = 13 1n

let x = addl(a) in
add1(x)

x86 Memory Conventions

34

Free/Callee
rsp — 8 x 3
rsp — 8 x 2
rsp — 8 x 1
rsp —

Used/Caller

Stack

x: 14

b: |3

a: /

Return Address

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

35

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let x = 10 /* [] *x/
in add1(x) /* [Xx —> 1] %/

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let x = 10 /* [] */
in let y = addl(x) /% [x —> 1] %/
in let z = addl(y) /x [y — 2, x ——> 1] x/
in add1(z) /¥ [z —> 3, vy — 2, x —> 1] %/

Compiling Let

To compile our code, we need to establish a mapping of variable names to
memory locations

let a = 10 /* [] %/
in let ¢ = let b = add1(a) /x [a —> 1] %/
in let d = add1(b) /% [b ——> 2, a —> 1] */
in addl(b) /¥ [d —> 3, b —> 2, a —> 1] */
in addl(c) / [c ——> 4, d —> 3, b —> 2, a —> 1] */
Wasteful?

When a variable goes out of scope, its value is no longer needed

38

Compiling Let

Only need to ensure that the memory locations are unique relative to the other
variables that are currently in scope

let a = 10 /% [] %/
in let c = let b = addl(a) /x [a —> 1] %/
in let d = add1(b) /% [b —> 2, a —> 1] x/
in add1(b) /¥ [d —> 3, b —> 2, a —> 1] %/
in addl(c) /* [c —> 2, a —> 1] %/

How can you implement this in code? Again: designing the right kind of
environment Is the key

39

1n

1n

let a
let c

add1(c)

10

let b =
in let d =
in add1(b)

add1(a)
add1(b)

mov
mov
mov
add
mov
mov
add
mov
mov
add
mov

mov
add

rax, 10

[rsp — 8%1], rax
rax, [rsp — 8x1]
rax, 1

[rsp — 8%2], rax
rax, [rsp — 8x2]
rax, 1

[rsp — 8%3], rax
rax, [rsp — 8x%x2]
rax, 1

[rsp — 8%2], rax
rax, [rsp — 8x2]

rax, 1

let x = 10 mov rax, 10
in add1l(x) mov [rsp - 8x1], rax
mov rax, [rsp — 8x1]

add rax, 1

