EECS 483: Compiler Construction

Lecture 1:
Concrete and Abstract Syntax, Interpreters and Compilers

January 12, 2025



Announcements

- Office hours today after class, 3-4:30 in Max's office, Beyster 4628
- First homework to be released on Wednesday



Learning Objectives

1. Relation between concrete and abstract syntax

2. How we use a parser generator to generate a parser from a
grammarr.

3. How to represent programs as abstract syntax trees

4. How to implement basic interpreters, compilers and optimizers as
recursive traversals of abstract syntax trees

5. Basics of x86 instructions and our calling convention



Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?



Snake v0.1: "Adder"

Today: add basic computation to adder, see how this affects
the entire compiller pipeline.



Snake v0.1: "Adder"

Concrete Syntax

42
add1(42) 43
sub1(42) 41

subl(add1l(add1(42))) 43



Concrete Syntax: Grammar

Eexpr:
- NUMBER

| () <expr> )
| () <expr> )



Concrete Syntax: Grammar

Eexpr:
- NUMBER

| () <expr> )
| () <expr> )



Concrete Syntax

The concrete syntax of a program is the textual representation of the
program which is given as an input to the compiler.

The compiler frontend, specifically the parser performs two tasks:

1. Recognition: determine whether the input program is well-formed,
reject it if it is not

2. Parsing: construct a more useful internal representation of the
program: the abstract syntax tree



Concrete vs Abstract Syntax

The concrete syntax of a program is the textual representation of the
program which is given as an input to the compiler.

This includes many details which are not relevant to implementing an
Interpreter or a compiler such as: whitespace, comments, exact
parenthesization, exact variable names etc.

The abstract syntax tree (AST) of a program is an abstraction of the

concrete syntax that ignores some semantically irrelevant details of the
concrete syntax.

10



Abstract Syntax abstracts Concrete Syntax

add1(sub1(17))

addl

all are parsed

(subl
into the same AST

(17 ) l

)

add1l(sub1(0x11))



Much of Concrete Syntactic Details are Irrelevant

Applicative
add1(sub1(17))

Lisp all can be

(add1l (subl 17)) represented @
by the same

Method-call AST
17.subl.addl

Assembly-like @

17: subl: addl



O
-
O
O
O
2
-



x86 Basics

x86 "Abstract Machine" abstracts from low-level hardware detalls into a
reasonable machine for us to think about.

14



x86 Registers

16 general-purpose 64-bit registers
- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15
Each holds a 64-bit value, so 128 bytes of extremely fast memory.

Mostly indistinguishable to different instructions. rsp the "stack pointer” is the
main exception.

There are also ways to operate on only a portion of the bits:
- eax (32 bits), ax (16 bits), al (low 8 bits), ah (high 8 bits) of rax

- for simplicity, we'll work with the full 64-bit versions unless required by certain
Instructions

15



x86 Instructions: mov

mov dest, src
Copies the value of src into the memory location dest.

Can be used for loads, stores, constants, complex address calculations.

For now:
mov rdx, 13

mov rax, rdl

Full details are very complex: https://github.com/xoreaxeaxeax/movfuscator

16


https://github.com/xoreaxeaxeax/movfuscator

x86 Instructions: add

add dest, src
Semantics: Adds the value of src to dest and stores the result in dest
"dest += src’
(side-effect: updates the RFLAGS reqister)
mov rdx, 13
mov rax, rdi
Caveat: constants can only be 32-bit values!

Reference: https://www.felixcloutier.com/x86/add

17



x86 Instructions: sub

sub dest, src
Semantics: Subtracts the value of src from dest and stores the result in dest
"dest -= src’
(side-effect: updates the RFLAGS reqister)
sub rdx, 13
sub rax, rdi
Caveat: constants can only be 32-bit values!

Reference: https://www.felixcloutier.com/x86/sub

18


https://www.felixcloutier.com/x86/sub

x86 Instructions: ret

ret

Semantics: pops a return address off of the stack (as determined by rsp) and
jumps to it

Simplification: if you are implementing a function and rsp is unchanged from
when you were called, this will return control to the caller.

More details when we come back to function calls.

Reference: https://www.felixcloutier.com/x86/ret

19



Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

20



Snake v0.1: "Adder"

Extend adder to take an input




Grammar

>
prog>: (def|(main)(()(x))][:] <exp
Eexpr:

' NUMBER

[
 (add1]((] <expr> )]
| [sub1]((] <expr> )]




O
-
O
O
O
2
-



System V AMD64 Calling Convention (So Far)

Return value Is stored In rax

First argument is stored in rdi

rsp points to the return address, so that ret returns if rsp is unchanged.

24



Summary

* | anguage extension: add1, sub1, input
* Concrete syntax, grammar, Recognizers
* Abstract syntax, Parsers and Parser generators

 Programming with abstract syntax trees: enum, pattern matching, recursive-
descent

* X806 basics: registers, mov, add, sub, ret

* Basic optimization: compile-time vs runtime computation

25



For Next Time

* [ry out today's live code, write tests, experiment with generating code.

 Work through the chapters 5,6,8 and 9 of the Rust book: https://rust-
book.cs.brown.edu/

26


https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/

