
January 12, 2025

EECS 483: Compiler Construction
Lecture 1:
Concrete and Abstract Syntax, Interpreters and Compilers

1

Announcements

2

- Office hours today after class, 3-4:30 in Max's office, Beyster 4628

- First homework to be released on Wednesday

Learning Objectives

3

1. Relation between concrete and abstract syntax

2. How we use a parser generator to generate a parser from a

grammar.

3. How to represent programs as abstract syntax trees
4. How to implement basic interpreters, compilers and optimizers as

recursive traversals of abstract syntax trees

5. Basics of x86 instructions and our calling convention

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

4

Snake v0.1: "Adder"

5

Today: add basic computation to adder, see how this affects
the entire compiler pipeline.

Snake v0.1: "Adder"

6

Concrete Syntax: Grammar

7

Concrete Syntax: Grammar

8

Concrete Syntax

9

The concrete syntax of a program is the textual representation of the
program which is given as an input to the compiler.

The compiler frontend, specifically the parser performs two tasks:

1. Recognition: determine whether the input program is well-formed,
reject it if it is not

2. Parsing: construct a more useful internal representation of the
program: the abstract syntax tree

Concrete vs Abstract Syntax

10

The concrete syntax of a program is the textual representation of the
program which is given as an input to the compiler.

This includes many details which are not relevant to implementing an
interpreter or a compiler such as: whitespace, comments, exact
parenthesization, exact variable names etc.

The abstract syntax tree (AST) of a program is an abstraction of the
concrete syntax that ignores some semantically irrelevant details of the
concrete syntax.

Abstract Syntax abstracts Concrete Syntax

11

add1

sub1

17

add1(sub1(17))

add1

 (sub1

(17)

)

add1(sub1(0x11))

all are parsed

into the same AST

Much of Concrete Syntactic Details are Irrelevant

12

add1(sub1(17))

all can be
represented
by the same
AST

12

Applicative

(add1 (sub1 17))
Lisp

17.sub1.add1
Method-call

17; sub1; add1
Assembly-like

add1

sub1

17

Live Code

13

x86 Basics

14

x86 "Abstract Machine" abstracts from low-level hardware details into a
reasonable machine for us to think about.

x86 Registers

15

16 general-purpose 64-bit registers

- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15

Each holds a 64-bit value, so 128 bytes of extremely fast memory.

Mostly indistinguishable to different instructions. rsp the "stack pointer" is the
main exception.

There are also ways to operate on only a portion of the bits:

- eax (32 bits), ax (16 bits), al (low 8 bits), ah (high 8 bits) of rax

- for simplicity, we'll work with the full 64-bit versions unless required by certain
instructions

x86 Instructions: mov

16

 mov dest, src

Copies the value of src into the memory location dest.

Can be used for loads, stores, constants, complex address calculations.

For now:

mov rdx, 13

mov rax, rdi

Full details are very complex: https://github.com/xoreaxeaxeax/movfuscator

https://github.com/xoreaxeaxeax/movfuscator

x86 Instructions: add

17

 add dest, src

Semantics: Adds the value of src to dest and stores the result in dest

"dest += src"

(side-effect: updates the RFLAGS register)

mov rdx, 13

mov rax, rdi

Caveat: constants can only be 32-bit values!

Reference: https://www.felixcloutier.com/x86/add

x86 Instructions: sub

18

 sub dest, src

Semantics: Subtracts the value of src from dest and stores the result in dest

"dest -= src"

(side-effect: updates the RFLAGS register)

sub rdx, 13

sub rax, rdi

Caveat: constants can only be 32-bit values!

Reference: https://www.felixcloutier.com/x86/sub

https://www.felixcloutier.com/x86/sub

x86 Instructions: ret

19

ret

Semantics: pops a return address off of the stack (as determined by rsp) and
jumps to it

Simplification: if you are implementing a function and rsp is unchanged from
when you were called, this will return control to the caller.

More details when we come back to function calls.

Reference: https://www.felixcloutier.com/x86/ret

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

20

Snake v0.1: "Adder"

21

Extend adder to take an input

Grammar

22

Live Code

23

System V AMD64 Calling Convention (So Far)

24

Return value is stored in rax

First argument is stored in rdi

rsp points to the return address, so that ret returns if rsp is unchanged.

Summary

• Language extension: add1, sub1, input

• Concrete syntax, grammar, Recognizers

• Abstract syntax, Parsers and Parser generators

• Programming with abstract syntax trees: enum, pattern matching, recursive-
descent

• x86 basics: registers, mov, add, sub, ret

• Basic optimization: compile-time vs runtime computation

25

For Next Time

• Try out today's live code, write tests, experiment with generating code.

• Work through the chapters 5,6,8 and 9 of the Rust book: https://rust-
book.cs.brown.edu/

26

https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/

