
March 31
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 20:
Intro to Frontend, Lexing 1

1

Midterm

2

- Raw Grades released on Gradescope, curved grades on Canvas.

- Median 75/90 ~ 83%

- Mean 73/90 ~ 81%

- Std dev. ~ 12

Curved to a Mean of 85%

Submit any regrade requests this week.

Midterm by Q

3

Lowest averages:

Unfamiliar calling convention

Minimal SSA form

Translating Imperative to Functional Code

Assignments

4

Due this Friday, get on it!

Assignment 5: optimization released in 1 week

Compiler Frontend

Compiler Frontends

6

The task of the compiler frontend is take the input program as a string and

1. Validate that it is a well-formed program

2. Output an Abstract Syntax Tree that is more convenient for the rest of the
compiler pipeline to use

Compiler Frontend

Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

input

string

validated

AST

Compiler Frontends

7

So far in class we have only implemented a small part of the frontend: the
"semantic analysis" phase. For Snake programs this meant checking variables
and functions are used properly.

Remainder of the semester: first two components of the frontend lexing/lexical
analysis and parsing/syntactic analysis

Compiler Frontend

Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

input

string

validated

AST

Compiler Frontends

8

The task of the lexing and parsing phases is to find structure (abstract syntax
trees) in an unstructured representation (strings of characters).

Works differently from passes we've seen so far, which all had tree-structured
programs as inputs.

LEXING

9

Lexical analysis, tokens, regular expressions, automata

First Step: Lexical Analysis
• Change the character stream “if (b == 0) a = 0;” into tokens:

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE;
Ident(“a”); EQ; Int(0); SEMI; RBRACE

• Token: data type that represents indivisible “chunks” of text:
– Identifiers: a y11 elsex _100
– Keywords: if else while
– Integers: 2 200 -500 5L
– Floating point: 2.0 .02 1e5
– Symbols: + * ` { } () ++ << >> >>>
– Strings: “x” “He said, \”Are you?\””
– Comments: // 483: Project 1 … /* foo */

• Often delimited by whitespace (‘ ‘, \t, etc.)
– In some languages (e.g. Python or Haskell) whitespace is significant

10

if (b == 0) { a = 0 ; }

DEMO: LEXING BY HAND

11

How hard can it be?
handlex.ml, handlex0.ml

Lexing By Hand
• How hard can it be?
– Tedious and painful!

12

• Problems:
– Precisely define tokens
– Matching tokens simultaneously
– Reading too much input (need look ahead)
– Error handling
– Hard to compose/interleave tokenizer code
– Hard to maintain

PRINCIPLED SOLUTION TO
LEXING

13

Making Lexing Less Painful
• Lexers are
• tedious to write
• easy to mess up, hard to read
• repetitive: most lexers are essentially the same algorithm but different

specifics
• Solution: make a new, high-level domain-specific language for writing lexers
• Easier for humans to read, write, update
• Efficient implementation strategy implemented once and for all
• limited computational power -> Rice's theorem no longer applies, can

get "perfect" optimization
• Examples:
• lex/flex
• antlr
• ocamllex
• In Rust: logos, lalrpop

14

A Lexer Compiler
• Now we have reduced lexing to a mini-compiler task. So let's do what

we've been doing all semester!
• Design a language for lexers
• Describe its semantics
• Transform that language into intermediate representations
• Optimize the intermediate representation
• Generate code that implements our optimized IR.

15

A Language for Lexers
• What language should we use to describe a lexer?
• What does a lexer need to do?
• A lexer needs to specify
• What strings make up the "tokens" of our language
• How to turn these abstract tokens into data that our compiler

pipeline can use
• Need to make a language for describing sets of strings

16

Formal Languages
• First we fix the "alphabet" of characters Σ.
• Common alphabets { 0 , 1 } for bitstrings
• 0-255 for ASCII characters
• very large set of Unicode "characters"

• A string (over Σ) is a finite sequence of characters (i.e., elements of Σ)
• A formal language is a subset of strings.

• Examples that we use in lexing:
• Singletons for particular keywords { "def" } {"let"} {"extern"} or syntactic tokens { ")"

} { "(" } { ":" }
• Booleans { "true" , "false" }
• The set of all number literals { 0, -1, +1, 199239190, ... }
• The set of all valid variable names { "x", "y", "z",... but not "def", "extern" etc }

• A lexer generator then needs a syntax for describing such formal languages
• A language of expressions
• Which are given a semantics as formal languages

17

Regular Expressions
• Regular expressions are a syntax for defining formal languages
• A regular expression R has one of the following forms:
– ε Epsilon stands for the empty string

– ‘a’ An ordinary character stands for itself

– R1 | R2 Alternatives, stands for choice of R1 or R2
– R1R2 Concatenation, stands for R1 followed by R2
– R* Kleene star, stands for zero or more repetitions of R

• Useful extensions:
– “foo” Strings, equivalent to 'f''o''o'

– R+ One or more repetitions of R, equivalent to RR*

– R? Zero or one occurrences of R, equivalent to (ε|R)

– ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)

– [^'0'-'9'] Any character except 0 through 9

– R as x Name the string matched by R as x

18

Example Regular Expressions
• Recognize the keyword “if”: ”if”

• Recognize a digit: ['0'-'9']
• Recognize an integer literal: '-'?['0'-'9']+
• Recognize an identifier:

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*

• In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase

19

How to Match?
• Consider the input string: ifx = 0
– Could lex as: or as:

• Regular expressions alone are ambiguous, need a rule for choosing
between the options above

• Most languages choose “longest match”
– So the 2nd option above will be picked

– Note that only the first option is “correct” for parsing purposes

• Conflicts: arise due to two tokens whose regular expressions have a
shared prefix
– Ties broken by giving some matches higher priority

– Example: keywords have priority over identifiers

– Usually specified by order the rules appear in the lex input file

20

if x = 0 ifx = 0

Lexer Generators
• Reads a list of regular expressions: R1,…,Rn , one per token.
• Each token has an attached “action” Ai (just a piece of code to run

when the regular expression is matched):

rule token = parse
| '-'?digit+ { Int (Int32.of_string (lexeme lexbuf)) }
| '+' { PLUS }
| 'if' { IF }
| character (digit|character|'_')* { Ident (lexeme lexbuf) }
| whitespace+ { token lexbuf }

• Generates scanning code that:
1. Decides whether the input is of the form (R1|…|Rn)*
2. Whenever the scanner matches a (longest) token, it runs the associated

action
3. Most typically: adds a token to the output stream

21

actions
token
regular expressions

DEMO: OCAMLLEX

22

lexlex.mll

