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Lecture 19:  
Dataflow Analysis
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Announcements

2

- Exam grades still not quite done. Will review the grades and 
distribution on Monday

- March 27 Office Hours: Yuchen instead of Max

- Assignment 4 due next Friday. Get started! 



CODE ANALYSIS
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Assertion Removal
• Dynamic typing adds many runtime assertions into our program. 

• let x = f() in 
let y = x + 2 in 
let z = y * x in 
... 

• Current compilation always adds assertions that inputs are integers 

• x = f() 
assertInt(x) 
y = x + 2 
assertInt(y) 
assertInt(x) 
y2 = y >> 1 
z = y2 * x 
... 

• Which assertions can we remove?
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Assertion Removal
• When is it correct to remove an assertion from our SSA program? 

 
... 
assertInt(x) 
... 
 
When we are sure that the assertion will succeed 
 
In this case, if we are sure that x can only ever be a (tagged) integer at 
runtime. 

• Appropriate analysis: determine what possible values x can take at 
runtime.
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Possible Values Analysis
• To perform assertion removal, we need to figure out what possible values 

variables take at runtime. 
• Perform an analysis that says at every program point, the set of possible values 

that every variable might have at that point in the program. 
• Remove assertions that always would succeed on the possible values 

• Rice's theorem applies: it's impossible to compute the exact correct sets. So we 
must approximate. 
 
Which way should we approximate? 
• Underapproximate: produce a subset of the true possible values. But might 

miss some 
• Overapproximate: produce a superset of the true possible values. But might 

include some that never happen 
• For assertion removal, we need to overapproximate. 
• If our set is a superset of the true possible values, and still contains only tagged 

integers, then at runtime the possible value is definitely a tagged integer. 
• Might miss out on some assertion removals, but that's unavoidable.
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Possible Values Analysis
• What do we mean by "possible values"? 
• Performing this analysis at the SSA level. In SSA, a value is a 64-bit 

integer. 
• So we can represent a set of possible SSA values as a HashSet<i64> 

in Rust. 
 
 
 
 
 
 
 
 
Problem: after x = f(), assuming f is an extern function, x may take on 
any value. That would be a huge set. 
In general, a set of i64 values would take 2^(2^64) bits to represent!
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x = f() 
assertInt(x) 
y = x + 2 
assertInt(y) 
assertInt(x) 
y2 = y >> 1 
z = y2 * x 



Abstract Interpretation
• To keep space manageable, we need a different representation of sets, 

one that takes much less space than 2^(2^64) bits. 
• This inherently means we are missing out on precision! But most of 

those sets are never going to come up in our analysis anyway. 
• We design an "abstract domain" of possible value sets that is good 

enough to perform our analysis. 
• To start, let's just worry about removing assertInt. 
• A simple abstract domain is to have just three elements: 
• Any (aka Top): this represents the set of all posssible 64-bit integers 
• Even (aka TaggedInt): this represents the even 64-bit integers 
• None aka Empty aka Bottom: the represents the empty set
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Flow Functions
• At each program point, for each variable associate an approximation of 

what the possible values are. 
• For each instruction, define a "flow function" that says how the possible 

values are affected by performing the operation
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Flow Functions
• At each program point, for each variable associate an approximation of what the 

possible values are. 
• For each instruction, define a "flow function" that says how the possible values are 

affected by performing the operation 
 
x = y + z 
 
What is the most precise information we know about the possible values of x based on 
the possible values of y and z? 
 
Poss(x) = Flow[+](Poss(y), Poss(z)) ~~ { y + z | y in Poss(y), z in Poss(z) } 
Flow[+](Any, Any) = Any 
Flow[+](Any, Even) = Flow[+](Even, Any) = Any 
Flow[+](Even, Even) = Even 
Flow[+](None, Q) = None 
Flow[+](P, None) = None 

• Why is this correct? We output the most precise approximation of the set of all values 
that result from adding values in the input sets. 

• None + Q = { y + z | y in EmptySet, z in Q } = EmptySet
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Flow Functions
• At each program point, for each variable associate an approximation of 

what the possible values are. 
• For each instruction, define a "flow function" that says how the possible 

values are affected by performing the operation 
 
x = y << n where n >= 1 
 
Poss(x) = Flow[<< n](Poss(y)) ~~ { y << n | y in Poss(y) } 
Flow[<< n](Any) = Even 
Flow[<<n](Even) = Even 
Flow[<<n](None) = None 

• Note here that the case for Even loses precision: 
• { y << 1 | y in Even } = Multiples of 4 subset Even
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Flow Functions
• At each program point, for each variable associate an approximation of 

what the possible values are. 
• For each instruction, define a "flow function" that says how the possible 

values are affected by performing the operation 
 
x = y * z 
 
What is the most precise information we know about the possible 
values of x based on the possible values of y and z? 
 
Poss(x) = Flow[*](Poss(y), Poss(z)) ~~ { y * z | y in Poss(y), z in Poss(z) } 
Flow[+](Any, Any) = Any 
Flow[+](Any, Even) = Flow[+](Even, Any) = Even 
Flow[+](Even, Even) = Even 
Flow[+](None, Q) = None 
Flow[+](P, None) = None
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Flow Functions
• At each program point, for each variable associate an approximation of 

what the possible values are. 
• For each instruction, define a "flow function" that says how the possible 

values are affected by performing the operation 
 
assertInt(x) 
 
Poss(x) = Flow[assertInt](Poss(x)) 
Flow[assertInt](Any) = Even 
Flow[assertInt](Even) = Even 
Flow[assertInt](None) = None

14



Straightline Code Example
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x = f() 
assertInt(x) 
y = x + 2 
assertInt(y) 
assertInt(x) 
y2 = y >> 1 
z = y2 * x 

0:  
1: {x: Any}  
2: {x: Even} 
3: {x: Even, y: Even} 
4: {x: Even, y: Even} 
5: {x: Even, y: Even} 
6: {x: Even, y: Even, y2: Any} 
7: {x: Even, y: Even, y2: Any, z: Any} 
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6 
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0 



Straightline Code Example
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0:  
1: {x: Any}  
2: {x: Even} 
3: {x: Even, y: Even} 
4: {x: Even, y: Even} 
5: {x: Even, y: Even} 
6: {x: Even, y: Even, y2: Any} 
7: {x: Even, y: Even, y2: Any, z: Any} 
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x = f() 
assertInt(x) 
y = x + 2 
assertInt(y) 
assertInt(x) 
y2 = y >> 1 
z = y2 * x 



Tag-checking Analysis
• At each program point, for each variable associate an approximation of what the possible values 

are. 
• For each instruction, update that information accordingly 

To do a complete analysis: extend this to all SSA operations 

• What about blocks and functions? 
 
  
f(x): 
  assertInt(x) 
  assertInt(y) 
  ... 
What info do we have about x? about y? 
Collect the info from all the places that branch to f, taking a "union" 
We call these the predecessors of f, because they are the incoming edges of the control-flow 
graph. 
Because we can have loops, f can be a predecessor of itself, so we have a similar circularity that 
we did in liveness. 
Same solution: initialize the information to be minimal (bottom in this case) and update iteratively 
For functions, the predeccessors are places that call f. 
For main, there is a special implicit predecessor which is the entry point. This sets the input 
variable to Any because the program input is an array.
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Loop Example
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extern g 
def main(y): 
  def loop(i,a): 
    if i == 0: 
      a 
    else: 
      loop(i - 1, a + g()) 
  in 
  loop(y, 0)

main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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 0: {y:Any} 
 1: {y,i,a:None} 
 2: 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: 
 6: 
 7: 
 8: 
 9: 
10:

Initialize the blocks: main entry point arguments are Any, other 
blocks everything is None.



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Next: apply the flow functions to update the internal nodes

 0: {y:Any} 
 1: {y,i,a:None} 
 2: {y,i,a,b:None} 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
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  br loop(y, 0) 
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To start a new iteration, initialize blocks based on the previous 
round's info about predecessors

 0: {y:Any} 
 1: {y,i,a:None} 
 2: {y,i,a,b:None} 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: ? 
 1: ? 
 2: 
 3: ? 
 4: ? 
 5:  
 6: 
 7: 
 8: 
 9:  
10:



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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To start a new iteration, initialize blocks based on the previous 
round's info about predecessors

 0: {y:Any} 
 1: {y,i,a:None} 
 2: {y,i,a,b:None} 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: {y:Any} 
 1: {y:Any U None, 
     i:Any U None, 
     a: Even U None} 
 2: 
 3: ? 
 4: ? 
 5:  
 6: 
 7: 
 8: 
 9:  
10:the loop(i,a) body 1 has two predecessors:


br loop(y, 0)

br loop(i', a')


Take the "union" of their information



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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To start a new iteration, initialize blocks based on the previous 
round's info about predecessors

 0: {y:Any} 
 1: {y,i,a:None} 
 2: {y,i,a,b:None} 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: ? 
 4: ? 
 5:  
 6: 
 7: 
 8: 
 9:  
10:

the loop(i,a) body 1 has two predecessors:

br loop(y, 0)

br loop(i', a')


Take the "union" of their information



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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To start a new iteration, initialize blocks based on the previous 
round's info about predecessors

 0: {y:Any} 
 1: {y,i,a:None} 
 2: {y,i,a,b:None} 
 3: {y,i,a:None} 
 4: {y,i,a:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: {y,i,a,b:None} 
 4: {y,i,a,b:None} 
 5:  
 6: 
 7: 
 8: 
 9:  
10:

thn() and els() each have one predecessor 

cbr b thn() els()



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Update the rest of the internal nodes

Current Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: {y,i,a,b:None} 
 4: {y,i,a,b:None} 
 5:  
 6: 
 7: 
 8: 
 9:  
10:



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Update the rest of the internal nodes

Current Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: {y:Any,i:Any,a:Even,b:Any} 
 3: {y,i,a,b:None} 
 4: {y,i,a,b:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Since the results changed, we perform 
another iteration



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: {y:Any,i:Any,a:Even,b:Any} 
 3: {y,i,a,b:None} 
 4: {y,i,a,b:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: ? 
 4: ? 
 5:  
 6: 
 7: 
 8: 
 9:  
10:

the loop(i,a) body 1 has two predecessors:

br loop(y, 0)

br loop(i', a')


Take the "union" of their information



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: {y:Any,i:Any,a:Even,b:Any} 
 3: {y,i,a,b:None} 
 4: {y,i,a,b:None} 
 5: {y,i,a:None} 
 6: {y,i,a,i':None} 
 7: {y,i,a,i':None,x:Any} 
 8: {y,i,a,i':None,x:Even} 
 9: {y,i,a,i',a':None,x:Even} 
10: {y,i,a,i',a':None,x:Even}

Previous Round Next Round

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: {y:Any,i:Any,a:Even,b:Any} 
 4: {y:Any,i:Any,a:Even,b:Any} 
 5:  
 6: 
 7: 
 8: 
 9:  
10:

thn() and els() each have one predecessor 

cbr b thn() els()



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Update the rest of the internal nodes

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: 
 3: {y:Any,i:Any,a:Even,b:Any} 
 4: {y:Any,i:Any,a:Even,b:Any} 
 5:  
 6: 
 7: 
 8: 
 9:  
10:

Current Round



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Update the rest of the internal nodes

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: {y:Any,i:Any,a:Even,b:Any} 
 3: {y:Any,i:Any,a:Even,b:Any} 
 4: {y:Any,i:Any,a:Even,b:Any} 
 5: {y:Any,i:Even,a:Even,b:Any} 
 6: {y:Any,i:Even,a:Even,b:Any,i':Even} 
 7: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Any} 
 8: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Any} 
 9: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Int} 
10: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Int,a':Int}

Current Round

If we repeat one more iteration, we get the same result, and we 
have our final analysis



main(y): 
  loop(i,a): 
    thn(): 
      ret a 
    els(): 
      assertInt(i) 
      i' = i - 2 
      x = g() 
      assertInt(a) 
      assertInt(x) 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 
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Update the rest of the internal nodes

 0: {y:Any} 
 1: {y:Any,i:Any,a:Even} 
 2: {y:Any,i:Any,a:Even,b:Any} 
 3: {y:Any,i:Any,a:Even,b:Any} 
 4: {y:Any,i:Any,a:Even,b:Any} 
 5: {y:Any,i:Even,a:Even,b:Any} 
 6: {y:Any,i:Even,a:Even,b:Any,i':Even} 
 7: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Any} 
 8: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Any} 
 9: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Int} 
10: {y:Any,i:Even,a:Even,b:Any,i':Even,x:Int,a':Int}

Current Round

With all of this work, we can remove 1 assertion: assertInt(a)

We can't prove that assertInt(i) succeeds because the initial 
value of y might not be an integer...



extern g 
def main(y): 
  def loop(i,a): 
    if i == 0: 
      a - z 
    else: 
      loop(i - 1, a + g()) 
  in 
  loop(y, 0)

extern g 
def main(y): 
  def loop(i,a): 
    if i == 0: 
      a 
    else: 
      loop(i - 1, a + g()) 
  in 
  if y == 0: 

 a 
else: 
  loop(y - 1, 0 + g())

inline once

If we re-do the analysis, no i is always an Int



Abstract Interpretation
• We used a simple interpretation for just removing assertInt 
• A simple abstract domain is to have just three elements: 
• Any (aka Top): this represents the set of all posssible 64-bit integers 
• Even (aka TaggedInt): this represents the even 64-bit integers 
• None aka Empty aka Bottom: the represents the empty set

33
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Abstract Interpretation
• We used a simple interpretation for just removing assertInt 
• What about for Booleans? 
• Update all flow functions accordingly 
• Similar for arrays 
• Tradeoff: more complex Abstraction means more precise analysis, 

but more space usage, more difficult to define
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GENERAL DATAFLOW ANALYSIS
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Common Features
• Liveness and Possible Values Analyses had similarities 
• In both, we have some domain of information we attach to each point in 

the program 
– Liveness, the domain is sets of variables 
– Possible values, the domain is maps from variables to (abstractions of sets of 

values) 

• Each analysis has a notion of flow function 
– How do we update the information based on each operation in the program. 

• But they propagate information in opposite directions 
– Liveness is Backwards: if I use a variable now, it is live in previous program points 
– Possible values is Forwards: if I learn a variables value now, I know it later as well 

• Each analysis aggregates information at control flow boundaries 
– Liveness takes the union of successors at a conditional branch 
– Possible values takes the union of predecessors at a block/function 

– Perform the analysis by starting from incorrect information and iterating until we get 
the same result, a fixed point.
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(Forward) Dataflow Analysis Framework
A forward dataflow analysis can be characterized by: 

1. A domain of dataflow values L   

– e.g. L = the powerset of all variables 

– Think of  ℓ∈L  as a property, then “x ∈ ℓ”  
means “x has the property” 

2. For each node n, a flow function Fn : L → L 
– “If ℓ is a property that holds before the node n, 

 then Fn(ℓ) holds after n” 

3. A combining operator ⨆ 

– “If we know either ℓ1 or ℓ2 holds on entry 
 to node n, we know at most ℓ1 ⨆ ℓ2” 

– in[n] := ⨆n’∈pred[n]out[n’]
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Generic Iterative (Forward) Analysis
for all n, in[n] := ⊥, out[n] := ⊥ 

repeat until no change 
 for all n 

    in[n] := ⨆n’∈pred[n]out[n’] 

    out[n] := Fn(in[n]) 

 end 
end 

• Here, ⊥ ∈ L (“bottom”) represents having the “most precise” constraint 
– Having “more precise” information enables more optimizations 

– “most precise” amount could be inconsistent with the constraints. 

– Iteration refines the answer, eliminating inconsistencies, producing less 
precise results
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Structure of L 
• The domain has structure that reflects the “amount” of information  

contained in each dataflow value. 
• Some dataflow values are more informative than others: 
– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1. 

– The dataflow value ℓ2 is “better” for enabling optimizations. 

• Example 1: for liveness and possible values analysis, smaller sets of 
variables are more informative. 
– Having smaller sets of variables live across an edge means that there are fewer 

conflicts for register allocation assignments. 
– So:   ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2  

• Example 2: for available expressions analysis, larger sets of nodes are 
more informative. 
– Having a larger set of nodes (equivalently, expressions) available means that 

there is more opportunity for common subexpression elimination. 
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2 
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L as a Partial Order
• L is a partial order defined by the ordering relation ⊑. 

• A partial order is an ordered set. 
• Some of the elements might be incomparable. 

– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1 

• Properties of a partial order: 
– Reflexivity:   ℓ ⊑ ℓ 

– Transitivity:  ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2 

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2 

• Examples: 
– Integers ordered by ≤ 

– Sets ordered by ⊆ or ⊇
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Subsets of {a,b,c} ordered by ⊆ 
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Possible Values
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Any ⨆ Any = Any ⨆ Even = Any ⨆ None  = Any


Even ⨆ Even = Even ⨆ None = Even


None ⨆ None = None



Meets and Joins
• The combinig operator, ⨆ operator is called the “join” operation. 

• It constructs the least upper bound: 
– ℓ1  ⊑  ℓ1 ⨆ ℓ2     and   ℓ2  ⊑  ℓ1 ⨆ ℓ2      

 “the join is an upper bound” 

– If ℓ1   ⊑  ℓ   and ℓ2   ⊑  ℓ  then ℓ1 ⨆ ℓ2   ⊑  ℓ          
 “there is no smaller upper bound”  

• The dual operator ⨅ is called the “meet” operation. 

• It constructs the greatest lower bound: 
– ℓ1 ⨅ ℓ2   ⊑  ℓ1   and   ℓ1 ⨅ ℓ2   ⊑  ℓ2       

 “the meet is a lower bound” 

– If ℓ   ⊑  ℓ1   and ℓ   ⊑  ℓ2  then ℓ   ⊑   ℓ1 ⨅ ℓ2          
 “there is no greater lower bound”  

• A partial order that has all meets and joins is called a lattice. 
– If it has just meets, it’s called a meet semi-lattice.
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Another Way to Describe the Algorithm
• Algorithm repeatedly computes (for each node n): 

• out[n] := Fn(in[n])   

• Equivalently:   out[n] := Fn(⨆n’∈pred[n]out[n’]) 

– By definition of in[n] 

• We can write this as a simultaneous update of the vector of out[n] 
values: 
– let xn = out[n] 

– Let X = (x1, x2, … , xn)      it’s a vector of points in L 

– F(X) = (F1(⨆j∈pred[1]out[j]), F2(⨆j∈pred[2]out[j]), …, Fn(⨆j∈pred[n]out[j])) 

• Any solution to the constraints is a fixpoint X of F 
– i.e. F(X) = X
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Iteration Computes Fixpoints
• Let X0 = (⟘, ⟘, …, ⟘) 

• Each loop through the algorithm apply F to the old vector: 
X1 = F(X0) 
X2 = F(X1) 
… 

• Fk+1(X) = F(Fk(X)) 
• A fixpoint is reached when Fk(X) = Fk+1(X) 
– That’s when the algorithm stops. 

• Wanted: a minimal fixpoint 
– Because that one is more informative/useful for performing optimizations
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Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be sensible is 

should be monotonic: 

• F : L → L is monotonic iff: 
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)  
– Intuitively:  “If you have more information entering a node, then you have more 

information leaving the node.” 

• Monotonicity lifts point-wise to the function: F : Ln → Ln  
– vector (x1, x2, … , xn) ⊑  (y1, y2, … , yn)  iff xi ⊑ yi for each i 

• Since we start at, each iteration moves up the lattice that F is consistent: F(X0) ⊑ 
X0 

– So each iteration moves at least one step down the lattice (for some component of the 
vector) 

– ⟘ ⊑ F(⟘) ⊑ F(F(⟘)) ⊑ ...  

• Therefore, # steps needed to reach a fixpoint is at most the height H of L times 
the number of nodes:  O(Hn)
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“Classic” Constant Propagation
• Constant propagation can be formulated as a dataflow analysis. 

• Idea: propagate and fold integer constants in one pass: 
x = 1;   x = 1; 
y = 5 + x;  y = 6; 
z = y * y;   z = 36; 

• Information about a single variable: 
– Variable is never defined. 

– Variable has a single, constant value. 

– Variable is assigned multiple values.
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Domains for Constant Propagation
• We can make a constant propagation lattice L for one variable like this: 

• To accommodate multiple variables, we take the product lattice, with 
one element per variable. 
– Assuming there are three variables, x, y, and z, the elements of the product 

lattice are of the form (ℓx, ℓy, ℓz). 

– Alternatively, think of the product domain as a context that maps variable 
names to their “abstract interpretations” 

• What are “meet” and “join” in this product lattice? 
• What is the height of the product lattice?
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⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …



Dataflow Analysis: Summary
• Many dataflow analyses fit into a common framework. 
• Key idea: Iterative solution of a system of equations over a lattice of 

constraints. 
– Iteration terminates if flow functions are monotonic.
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