
March 23
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 18:
Optimization and Dataflow Analysis

1

Slides adapted from Steve Zdancewic

Announcements

2

- Exam Grading almost done

- Assignment 4 due next Friday, April 4

OPTIMIZATIONS, GENERALLY

3

Why optimize?

When to apply optimization
• Inlining
• Function specialization
• Constant folding
• Constant propagation
• Value numbering
• Dead code elimination
• Loop-invariant code motion
• Common sub-expression elimination
• Strength Reduction
• Constant folding & propagation
• Branch prediction / optimization
• Register allocation
• Loop unrolling
• Cache optimization

4

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Safety
• Whether an optimization is safe depends on the programming

language semantics.
– Languages that provide weaker guarantees to the programmer permit more

optimizations but have more ambiguity in their behavior.

– e.g., In C, loading from uninitialized memory is undefined, so the compiler
can do anything if a program reads uninitalized data.

– e.g., In Java tail-call optimization (which turns recursive function calls into
loops) is not valid because of “stack inspection”.

• Example: loop-invariant code motion
– Idea: hoist invariant code out of a loop

• Is this more efficient?
• Is this safe?

5

while (b) {
 z = y/x;
 … // y, x not updated
}

z = y/x;
while (b) {
 … // y, x not updated
}

BASIC OPTIMIZATIONS

6

A high-level tour of a variety of optimizations.

Constant Folding
• Idea: If operands are known at compile type, perform the operation

statically.

int x = (2 + 3) * y ➔ 	int x = 5 * y

b & false		 	 	 ➔ 	 false

• Performed at every stage of optimization…
• Why?
– Constant expressions can be created by translation or earlier optimizations

 Example: A[2] might be compiled to:

MEM[MEM[A] + 2 * 4] ➔ MEM[MEM[A] + 8]

7

Constant Folding Conditionals

if (true) S ➔ S
if (false) S ➔ ;
if (true) S else S’ ➔ S
if (false) S else S’ ➔ S’
while (false) S ➔ ;

if (2 > 3) S ➔
if (false) S ➔ ;

8

Algebraic Simplification
• More general form of constant folding
– Take advantage of mathematically sound simplification rules

• Mathematical identities:
– a * 1 ➔ a a * 0 ➔ 0
– a + 0 ➔ a a – 0 ➔ a
– b | false ➔ b b & true ➔ b

• Reassociation & commutativity:
– (a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3
– (2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 4) ➔ a + 6

• Strength reduction: (replace expensive op with cheaper op)
– a * 4 ➔ a << 2
– a * 7 ➔ (a << 3) – a
– a / 32767 ➔ (a >> 15) + (a >> 30)

• Note 1: must be careful with floating point (due to rounding) and integer arithmetic
(due to overflow/underflow)

• Note 2: iteration of these optimizations is useful… how much?
• Note 3: must be sure that rewrites terminate:
– commutativity apply like: (x + y) ➔ (y + x) ➔ (x + y) ➔ (y + x) ➔ …

9

Constant Propagation
• If a variable is known to be a constant, replace the use of the variable

by the constant
• Value of the variable must be propagated forward from the point of

assignment
– This is a substitution operation

Example:
int x = 5;
int y = x * 2; ➔ int y = 5 * 2; ➔ int y = 10; ➔
int z = a[y];	 int z = a[y]; int z = a[y]; int z = a[10];

• To be most effective, constant propagation should be interleaved with
constant folding

10

Copy Propagation
• If one variable is assigned to another, replace uses of the assigned

variable with the copied variable.
• Need to know where copies of the variable propagate.
• Interacts with the scoping rules of the language.

• Example:

x = y; x = y;
if (x > 1) { ➔ if (y > 1) {
 x = x * f(x – 1); x = y * f(y – 1);
} }

• Can make the first assignment to x dead code (that can be eliminated).

11

Dead Code Elimination
• If a side-effect free statement can never be observed, it is safe to

eliminate the statement.

x = y * y // x is dead!
… // x never used ➔ …
x = z * z x = z * z

• A variable is dead if it is never used after it is defined.
– Computing such definition and use information is an important component of

program analysis

• Dead variables can be created by other optimizations…

12

Unreachable/Dead Code
• Basic blocks not reachable by any trace leading from the starting basic

block are unreachable and can be deleted.
– Performed at the IR or assembly level

– Improves cache, TLB performance

• Dead code: similar to unreachable blocks.
– A value might be computed but never subsequently used.

• Code for computing the value can be dropped
• But only if it’s pure, i.e., it has no externally visible side effects
– Externally visible effects: raising an exception, modifying a global variable,

going into an infinite loop, printing to standard output, sending a network
packet, launching a rocket

– Note: Pure functional languages (e.g., Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

13

Inlining
• Replace a call to a function with the body of the function itself with arguments

rewritten to be local variables:
• Example in C: inline pow into g  

• May need to rename variables to avoid capture
• Best done at the AST or relatively high-level IR.
• When is it profitable?
– Eliminates the stack manipulation, jump, etc.
– Can increase code size.
– Enables further optimizations

14

int g(int x) { return x + pow(x); }
int pow(int a) {

var b = 1; var x = 0;
while (x < a) {b = 2 * b; x = x + 1}
return b;

} int g(int x) {
int a = x;
int b = 1; int x2 = 0;
while (x2 < a) {b = 2 * b; x2 = x2 + 1};
tmp = b;
return x + tmp;

}

➔

note: renaming

Code Specialization
• Idea: create specialized versions of a function that is called from

different places with different arguments.

• Example: specialize function f in:

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known statically
– Often just one class implements a method.

15

Common Subexpression Elimination
• fold redundant computations together
– in some sense, it’s the opposite of inlining

• Example:

a[i] = a[i] + 1

compiles to:

[a + i*4] = [a + i*4] + 1

Common subexpression elimination removes the redundant add and multiply:

t = a + i*4; [t] = [t] + 1

• For safety, you must be sure that the shared expression always has the same
value in both places!

16

Unsafe Common Subexpression Elimination

• Example: consider this C function:
unit f(int[] a, int[] b, int[] c) {

var j = …; var i = …; var k = …;
b[j] = a[i] + 1;
c[k] = a[i];
return;

}
• The optimization that shares the expression a[i] is unsafe… why?

unit f(int[] a, int[] b, int[] c) {
var j = …; var i = …; var k = …;

 t = a[i];
b[j] = t + 1;
c[k] = t;
return;

}
17

LOOP OPTIMIZATIONS

18

Loop Optimizations
• Program hot spots often occur in loops.
– Especially inner loops

– Not always: consider operating systems code or compilers vs. a computer
game or word processor

• Most program execution time occurs in loops.
– The 90/10 rule of thumb holds here too.

(90% of the execution time is spent in 10% of the code)

• Loop optimizations are very important, effective, and numerous
– Also, concentrating effort to improve loop body code is usually a win

19

Loop Invariant Code Motion (revisited)
• Another form of redundancy elimination.
• If the result of a statement or expression does not change during the

loop and it’s pure, it can be hoisted outside the loop body.
• Often useful for array element addressing code
– Invariant code not visible at the source level

for (i = 0; i < a.length; i++) {
 /* a not modified in the body */
}

t = a.length;
for (i =0; i < t; i++) {
 /* same body as above */

}

20

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
• Strength reduction can work for loops too
• Idea: replace expensive operations (multiplies, divides) by cheap ones

(adds and subtracts)
• For loops, create a dependent induction variable:

• Example:
for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride by 3

int j = 0;
for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add
}

21

Loop Unrolling (revisited)
• Branches can be expensive, unroll loops to avoid them.

for (int i=0; i<n; i++) { S }

for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (; i<n; i++) { S } // left over iterations

• With k unrollings, eliminates (k-1)/k conditional branches
– So for the above program, it eliminates ¾ of the branches

• Space-time tradeoff:
– Not a good idea for large S or small n

• Interacts with instruction caching, branch prediction

22

EFFECTIVENESS?

23

Optimization Effectiveness?

24

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from:
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
Formal Verification of SSA-Based Optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:
 base time = 1.2s
 optimized time = 0.87s ⇒ 38% speedup

Example:
 base time = 2s
 optimized time = 1s ⇒ 100% speedup

Optimization Effectiveness?

• mem2reg: promotes alloca’ed stack slots to temporaries to enable register allocation

• Analysis:
– mem2reg alone (+ back-end optimizations like register allocation) yields ~78%

speedup on average
– -O1 yields ~100% speedup

 (so all the rest of the optimizations combined account for ~22%)
– -O3 yields ~120% speedup

• Hypothetical program that takes 10 sec. (base time):
– Mem2reg alone: expect ~5.6 sec
– -O1: expect ~5 sec
– -O3: expect ~4.5 sec

25

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

CODE ANALYSIS

26

Motivating Code Analyses
• There are lots of things that might influence the safety/applicability of

an optimization
– What algorithms and data structures can help?

• How do you know what is a loop?
• How do you know an expression is invariant?
• How do you know if an expression has no side effects?
• How do you keep track of where a variable is defined?
• How do you know where a variable is used?
• How do you know if two reference values may be aliases of one

another?

27

Assertion Removal
• Dynamic typing adds many runtime assertions into our program.

• let x = g() in
let y = x + 2 in
let z = y * x in
...

• Current compilation always adds assertions that inputs are integers

• x = g()
assertInt(x)
y = x + 2
assertInt(y)
assertInt(x)
y2 = y >> 1
z = y2 * x
...

• Which assertions can we remove?

28

Tag-checking Analysis
• At each program point, for each variable associate an approximation of

what the possible values are:
• Int: tagged integer, i.e., multiple of 2
• Bool: tagged boolean, i.e., either 0b001 or 0b101
• RawArray: untagged pointer to an array on the heap
• Array: tagged array, i.e., a pointer tagged with 0b11
• Top: any 64 bit value
• Bottom: never assigned to, i.e., uninitialized

• Usage: If analysis determines x is an Int, then remove assertions
assertInt(x)

similar for assertArray, assertBool etc.

29

Tag-checking Analysis

30

Bottom

Top

Int Bool RawArrayArray

fewest possibilities

most possibilities

Straightline Code Example

31

x = f()
assertInt(x)
y = x + 2
assertInt(y)
assertInt(x)
y2 = y >> 1
z = y2 * x

Tag-checking Analysis
• For each operation in SSA, need to define "flow function" that says what

possible tags are based on inputs.

Examples:

• x = y + z
• if y and z are tagged Ints, then x is a tagged Int
• otherwise x is Top

• x = y * z
• if y or z is a tagged Int then x is a tagged Int
• otherwise Top

• x = y << n
• if n is at least 1 then x is tagged Int
• if n is 0, then x is tagged if y is

• assertInt(x)
• after this, x is always a tagged Int, because otherwise execution ended

32

Straightline Code Example

33

x = f()
assertInt(x)
y = x + 2
assertInt(y)
assertInt(x)
y2 = y >> 1
z = y2 * x

0:
1: {x: Top}
2: {x: Int}
3: {x: Int, y: Int}
4: {x: Int, y: Int}
5: {x: Int, y: Int}
6: {x: Int, y: Int, y2: Top}
7: {x: Int, y: Int, y2: Top, z: Int}

5

1

3
4

2

6

7

0

Straightline Code Example

34

0:
1: {x: Top}
2: {x: Int}
3: {x: Int, y: Int}
4: {x: Int, y: Int}
5: {x: Int, y: Int}
6: {x: Int, y: Int, y2: Top}
7: {x: Int, y: Int, y2: Top, z: Int}

5

1

3
4

2

6

7

0
x = f()
assertInt(x)
y = x + 2
assertInt(y)
assertInt(x)
y2 = y >> 1
z = y2 * x

