EECS 483: Compiler Construction

Lecture 18:
Optimization and Dataflow Analysis

March 23 Slides adapted from Steve Zdancewic
Winter Semester 2025

Announcements

- Exam Grading almost done
- Assignment 4 due next Friday, April 4

Why optimize?

OPTIMIZATIONS, GENERALLY

High level

Mid level

| ow level

When to apply optimization

AST

IR

Canonical IR

Abstract assembly

Assembly

Inlining

Function specialization
Constant folding

Constant propagation

Value numbering

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength Reduction

Constant folding & propagation
Branch prediction / optimization
Register allocation

Loop unrolling

Cache optimization

Safety

* Whether an optimization is safe depends on the programming
language semantics.

— lLanguages that provide weaker guarantees to the programmer permit more
optimizations but have more ambiguity in their behavior.

— e.g., In C, loading from uninitialized memory is undefined, so the compiler
can do anything if a program reads uninitalized data.

— e.g., In Java tail-call optimization (which turns recursive function calls into
loops) is not valid because of “stack inspection”.

» Example: loop-invariant code motion
— ldea: hoist invariant code out of a loop

while (b) { Z = Y/X;

Z = Y/X; while (b) {

//'y, X not updated //'y, X not updated
¥ ¥

 |s this more efficient?
e |s this safe?

A high-level tour of a variety of optimizations.

BASIC OPTIMIZATIONS

Constant Folding

» |dea: If operands are known at compile type, perform the operation
statically.

inNtx=(2+3)"y = inNtx=5%y
b & false -> false
» Performed at every stage of optimization...

* Why?

— Constant expressions can be created by translation or earlier optimizations

Example: A[2] might be compiled to:

MEM[MEMI[A] + 2 * 4] = MEM[MEMI[A] + 8]

Constant Folding Conditionals

if (true) S > S

If (false) S = 2

if (frue) Selse S’ =S
if (false) Selse S’> S’
while (false) S >

If (2>3) S >
If (false) S >

Algebraic Simplification

More general form of constant folding
— Take advantage of mathematically sound simplification rules

Mathematical identities:

— a*1=2>a a*0=>0
— a+0=2>a a—0=2>a
— blfalse=>Db b&true=>Db

Reassociation & commutativity:
- (a+1)+2=>a+(1+2)>a+3
- 22+a)+42>@+2)+42>2a+(2+4)>a+6
Strength reduction: (replace expensive op with cheaper op)

— a4 -> a<<?2
- a*7 -> (a<<3)—a
— a/ 32767 > (a>>15) + (a >> 30)

Note 1: must be careful with floating point (due to rounding) and integer arithmetic
(due to overflow/underflow)

Note 2: iteration of these optimizations is useful... how much?

Note 3: must be sure that rewrites terminate:
— commutativity apply like: (x +y) 2> (y+x)=> X+y)=> (Y+X)=>

Constant Propagation

 If a variable is known to be a constant, replace the use of the variable
by the constant

» Value of the variable must be propagated forward from the point of
assignment

— This is a substitution operation

Example:

int X =
int y =
int z =

5;
X X% 23
alyl;

> 1nt vy
1nt z

5 % 2; » 1nt vy

alyl;

int z

10; >
alyl; int z = al[10];

» To be most effective, constant propagation should be interleaved with
constant folding

10

Copy Propagation

If one variable is assigned to another, replace uses of the assigned
variable with the copied variable.

Need to know where copies of the variable propagate.
Interacts with the scoping rules of the language.

» Example:

X =Y; —X=Y;

if (x>1){ > if(y>1){
X=X*f(x—1); x=y*fly—1);

}

Can make the first assignment to x dead code (that can be eliminated).

11

Dead Code Elimination

« If a side-effect free statement can never be observed, it is safe to
eliminate the statement.

X =y*y // xis dead!
// X never used ->

X=2Z2%2Z X=2Z2%2Z

« A variable is dead if it is never used after it is defined.

— Computing such definition and use information is an important component of
program analysis

» Dead variables can be created by other optimizations...

12

Unreachable/Dead Code

Basic blocks not reachable by any trace leading from the starting basic
block are unreachable and can be deleted.

— Performed at the IR or assembly level

— Improves cache, TLB performance

* Dead code: similar to unreachable blocks.
— A value might be computed but never subsequently used.
» Code for computing the value can be dropped

» Butonlyifit's pure, i.e., it has no externally visible side effects

— Externally visible effects: raising an exception, modifying a global variable,

going into an infinite loop, printing to standard output, sending a network
packet, launching a rocket

— Note: Pure functional languages (e.g., Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

13

Inlining

« Replace a call to a function with the body of the function itself with arguments
rewritten to be local variables:

* Example in C: inline pow into g
int g(int x) { return x + pow(x); }

int pow(int a) {
varb =1; var x =0;

\r/\ét[lsjren(gf a)ib=27"b;x=x+1} note: renaming
Y int g(int x) {
int a = Xx;
> iNntb=1;intx2 =0;
while (x2 <a){b =2 *b; x2=x2 + 1};
tmp = b;

return x + tmp;

}

« May need to rename variables to avoid capture
« Best done at the AST or relatively high-level IR.
« When is it profitable?

— Eliminates the stack manipulation, jump, etc.

— Can increase code size.
— Enables further optimizations

14

Code Specialization

 Idea: create specialized versions of a function that is called from
different places with different arguments.

* Example: specialize function f in:

class Aimplements | {int m() {...} }
class B implements [{ int m() {...} }

int f(1 x) { x.m(); } // don’t know which m
A a =new A(); f(a); // Know it’s A.m
B b = new B(); f(b); // know it's B.m

* f_A would have code specialized to dispatch to A.m

» f_B would have code specialized to dispatch to B.m
* You can also inline methods when the run-time type is known statically

— Often just one class implements a method.

15

Common Subexpression Elimination

» fold redundant computations together
— in some sense, it's the opposite of inlining

« Example:
afi] = afi] + 1
compiles to:
[a+1"4] =[a +1"4] + 1

Common subexpression elimination removes the redundant add and multiply:

t=a+1"4;[t]=[t] + 1

 For safety, you must be sure that the shared expression always has the same
value in both places!

16

Unsafe Common Subexpression Elimination

Example: consider this C function:
unit f(int[] a, int[] b, Int[] c) {

varj=...;vari=...;vark=...;
bfj] = ali] + 1;

clk] = ali];

return;

}
* The optimization that shares the expression a][i] is unsafe... why?
unit f(int[] a, int[] b, int[] c) {

varj=...;vari=...;vark=...;

t = ali];

b[j] =t + 1;

clk] =1;

return;

17

LOOP OPTIMIZATIONS

Loop Optimizations

Program hot spots often occur in loops.

— Especially inner loops

— Not always: consider operating systems code or compilers vs. a computer
game or word processor

Most program execution time occurs in loops.

— The 90/10 rule of thumb holds here too.
(90% of the execution time is spent in 10% of the code)

Loop optimizations are very important, effective, and numerous
— Also, concentrating effort to improve loop body code is usually a win

19

Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

» If the result of a statement or expression does not change during the
loop and it’s pure, it can be hoisted outside the loop body.

» Often useful for array element addressing code
— Invariant code not visible at the source level

for (i = 0; I < a.length; i1++) {
/* a not modified in the body */

}

v

t = a.length;
for (1 =0; 1 <t; 1++) {
/* same body as above */

}

20

Strength Reduction (revisited)

» Strength reduction can work for loops too

 Idea: replace expensive operations (multiplies, divides) by cheap ones
(adds and subtracts)

» For loops, create a dependent induction variable:

» Example:
for (inti=0; i<n; i++) { a[i*3] = 1; } // stride by 3

D
int | = 0;
for (int 1 =0; i<n; 1++) {
afj] =1;
j=]+3; //replace multiply by add
}

Loop Unrolling (revisited)

* Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }

W
for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (i<n; i++) { S } // left over iterations

» With k unrollings, eliminates (k-1)/k conditional branches

— So for the above program, it eliminates 3% of the branches

* Space-time tradeofft:
— Not a good idea for large S or small n

* Interacts with instruction caching, branch prediction

22

EFFECTIVENESS?

Optimization Effectiveness?

S 300%
EI 250% O LLVM-memZ2reg .LLVM-Ol a
E 500 @LLVvM-03 ® GCC-03
§ 150%
5 100%
2 50%
- o |
%ng‘ess S N AT i @Oixﬁigiw“‘w R s‘&%@b“i o
base time
%speedup = - X 100%
optimized time
Example:
base time = 2s
optimized time = 1s = 100% speedup
Example:
base time = 1.2s
optimized time = 0.87s = 38% speedup

Graph taken from:
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
Formal Verification of SSA-Based Optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013
24

S 300%
s 250%
— 200%

V
[
D
I
SN

100%
50%
0%

speedup over L

Optimization Effectiveness?

O LLVM-memZ2reg .LLVM-OI

@LLVvM-03 ® GCC-03

0 S .neD § .2 W V< et N LS S SN S (VIR S A S
ZOO@Q@ Wo° ¥ W e ¥ a@(&e G Q(A(S WO g9~ X\(ingow W b 6560‘&6&{60 RN

mem2reg: promotes alloca’ed stack slots to temporaries to enable register allocation
Analysis:

— mem2reg alone (+ back-end optimizations like register allocation) yields ~78%
speedup on average

— -O1 yields ~100% speedup
(so all the rest of the optimizations combined account for ~22%,)

— -0O3 yields ~120% speedup
Hypothetical program that takes 10 sec. (base time):
— Mem2reg alone: expect ~5.6 sec
— -O171: expect ~5 sec
— -0O3: expect ~4.5 sec

25

CODE ANALYSIS

Motivating Code Analyses

There are lots of things that might influence the safety/applicability of

an optimization

— What algorithms and data structures can help?

How do you
How do you
How do you
How do you
How do you

How do you
another?

know what is a loop?
KNOW an expression Is invariants

know if an expression has no side effects?
ceep track of where a variable is defined?
know where a variable is used?

know if two reference values may be aliases of one

27

Assertion Removal

Dynamic typing adds many runtime assertions into our program.

let x = g() 1in
let y = x + 2 1n
let z =y x X 1n

Current compilation always adds assertions that inputs are integers

X = g()
assertInt(x)
y = X + 2
assertInt(y)
assertInt(x)
y2 =y > 1
Z = Y2 *x X

Which assertions can we remove?

23

Tag-checking Analysis

At each program point, for each variable associate an approximation of

what the possible values are:
Int: tagged integer, i.e., multiple of 2

Bool: tagged boolean, i.e., either 0bO01 or Ob101

RawArray: untagged pointer to an array

on the heap

Array: tagged array, i.e., a pointer tagged with Ob11

Top: any 64 bit value
Bottom: never assigned to, i.e., uninitia

Usage: If analysis determines x is an Int, t
assertint(x)

similar for assertArray, assertBool etc.

1zed

nen remove assertions

29

most possiblilities

fewest possibilities

Tag-checking Analysis

Top

N

Bool Array RawArray

N

Bottom

30

Straightline Code Example

x = ()
assertInt(x)
Yy = X + 2
assertInt(y)
assertInt(x)
y2 =y > 1
Z = Y2 x X

31

Tag-checking Analysis

For each operation in SSA, need to define "flow function" that says what
possible tags are based on inputs.

Examples:
X=VY +Z
« if y and z are tagged Ints, then x is a tagged Int
« otherwise x is Top
X=Yy*Z
« ifyorzisatagged Int then x is a tagged Int
« otherwise Top
X =y <<n
« if nisatleast 1 then x is tagged Int
« ifnis 0, then x is tagged if y is
assertint(x)
« after this, x is always a tagged Int, because otherwise execution ended

32

Straightline Code Example

% = f()

lassertInt(x)
2y = X + 2
JassertInt(y)
4dassertInt(x)
5y2 =y > 1
7 = = y2 % X

7

N 6O 0 B W N RO

< ¥ K K X

Int}
Int}
Int}
Int, y2: Top}

Int, y2: Top, z:

33

Int}

Straightline Code Example

0:
1: {x: Top}
ix = f() 2: {x: Int}
zisie;'tf”?x’ 3: {x: Int, y: Int}
33553'1@“*% 4: {x: Int, y: Int}
5y2 =y > 1 5: {x: Int, y: Int}
72 = YA X 6: {x: Int, y: Int, y2: Top}
7: {x: Int, y: Int, y2: Top, z: Int}

34

