
March 17 
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 16:  
Register Allocation Part 1: Liveness Analysis

1



Announcements

2

- Exam tomorrow evening, March 18 6-8pm.

- Location: 3 rooms in DOW. Which room is determined by your uniqname:


- DOW1010 if your uniqname starts with A-JO

- DOW1017 if your uniqname starts with JS-R

- DOW1018 if your uniqname starts with S-Z


- Bring your own pen/pencil. 

- 1 page of notes ("cheat sheet") allowed.


- Standard letter size

- Typed or hand-written ok


Assignment 4 released on Wednesday.



Where Were We?

3

We've discussed so far how to compile many features correctly 
(functional correctness) only worrying about preserving asymptotic 
complexity.

But our generated code has high constant factors in its complexity:

- Use stack-allocation for all local variables.

- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile 
time

...



4

Live code example



Where Were We?

5

We've discussed so far how to compile many features correctly 
(functional correctness) only worrying about preserving asymptotic 
complexity.

But our generated code has high constant factors in its complexity:

- Use stack-allocation for all local variables.

- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile 
time

...



Where Were We?

6

We've discussed so far how to compile many features correctly 
(functional correctness) only worrying about preserving asymptotic 
complexity.

But our generated code has high constant factors in its complexity:

- Use stack-allocation for all local variables. 
- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile 
time

...



Memory Hierarchy

7

Systems
view of 

memory:

Snake/SSA
view of
memory

variables, heap allocated objects



Memory Allocation for Locals

8

For code generation, we need to map our SSA local variables to 
memory locations where they are stored.


Current strategy:

Allocate all variables onto the stack, based on nesting of the 
current scope.

Not completely naive: we do re-use some stack space in nested 
sub-blocks


Big Performance hit: need to move values in and out of registers 
frequently.



Register Allocation

9

For code generation, we need to map our SSA local variables to memory 
locations where they are stored.


Goal:

Store variable's values in registers whenever possible.

Only use stack space if we run out of registers.


Performance gains:

• 3-10x+ faster variable accesses (by far the most important 

optimization for a compiler)

• Space gain: smaller stack frames

High computational complexity: often the slowest part of the compiler



Register Allocation Examples

10



Register Allocation Examples

11

f(a): 
  x = a * 2 
  y = x + 7 
  ret y 



Register Allocation Examples

12

f(a): 
  x = a * 2 
  y = x + 7 
  ret y 

Currently: 
a: stack [rsp - 8] 
x: stack [rsp - 16] 
y: stack [rsp - 32] 



Register Allocation Examples

13

f(a): 
  x = a * 2 
  y = x + 7 
  ret y 

With register alloc: 
a: rax 
x: rax 
y: rax 



Register Allocation Examples

14

f(a): 
  x = a * 2 
  y = x + 7 
  ret y 

... assertInt 
sar rax, 1 
imul rax, 4 
... assertInt 
add rax, 14 
ret 

With register alloc: 
a: rax 
x: rax 
y: rax 



Register Allocation Examples

15

f(a): 
  x = a * 2 
  y = x + 7 
  z = x * y 
  ret z 

With register alloc: 
a: rax 
x: rax 
y: rcx 
z: rax 

Can’t put x and y in the same register
Say they are in conflict or interfering



Register Allocation: Graph Coloring Approach

16

The best register allocation 
algorithms (in terms of quality of 
output, not efficiency) use graph 
coloring 
Graph coloring problem:


Given a graph (V, E) and set of 
colors K assign each variable a 
color so that adjacent nodes all 
have different colors.




Register Allocation: Graph Coloring Approach

17

Graph Coloring register allocation:

Make an interference graph: 
vertices are variables, edges are 
interference relationships

Colors are the different registers

A solution is a valid register 
assignment

rax rsi rdx rdi

x

y

z

i a

i' a'



Register Allocation Overview

18

Break down into three tasks:

1. Liveness analysis: determine which values are needed at every 
program point

2. Conflict analysis: use liveness info to construct interference graph

3. Graph coloring: attempt to color the interference graph, spilling 
variables onto the stack if no solution can be found


More complicated in practice because registers are not all treated the 
same (argument/return registers, caller/callee-save, shift instructions)



Liveness Analysis

19

One of the most fundamental analyses a compiler performs is liveness 
analysis.

Used to determine at each program point which variables are live, i.e., 
which variables' values need to be available at runtime.

Example uses:

- Lambda lifting: the arguments that need to be added in lambda lifting 
are exactly the live ones

- Register allocation: only need to store all of the live variables in registers/
the stack. Means we can re-use space when a variable is no longer live.

- Function calls: only need to save the values of caller-save registers if the 
value is live



Liveness Analysis

20

Semantic definition: 

a variable x is live in a block b (or expression, operation, etc) if the 
observable behavior of b depends on the value of x. 

Can be done for ASTs or SSA blocks 
- ASTs: determining what values are captured for lambda lifting/
closure conversion

- SSA: determining interference for register allocation



Liveness Examples

is x live?



Liveness Examples

x

is x live?

Yes



Liveness Example

is x live?

x * y Yes



Liveness Example

if b: x else: y

is x live?

if b is ever 
true, yes
otherwise no



Liveness Example

is x live?

let b = true in 
if b: x else: y

yes



Liveness Example

is x live?

let b = false in 
if b: x else: y

no



Liveness Example

is x live?

yeslet b = read_input() in 
if b: x else: y



Liveness Example

is x live?

if complex_fn ever 
returns true: yes, 
otherwise: no

let b = complex_fn() in 
if b: x else: y



Limitation: Computability
Determining correct liveness information requires 
determining the possible values produced by arbitrary 
functions...

Rice's Theorem:
Any non-trivial semantic property of programs in a Turing-
complete language is undecidable

Determining liveness of variables is undecidable!



Limitation: Computability
Determining correct liveness information can be arbitrarily 
complicated...

What if we determined incorrect liveness information 
sometimes?

• false positives: sometimes we say a variable is live when it's 
not

• false negatives: sometimes we say a variable is not live 
when it is

False positives are ok: we will just use more registers/space 
than necessary



Limitation: Computability
Goal: Overapproximate
The output of our liveness analysis should include every 
variable that is live, but possibly some that are not live.

Approach so far in class: Use scope as our liveness analysis

• This is an overapproximation: a variable can't be live if it's 
not in scope

We can do much better

• Only consider variables live if they actually get used

• But consider all execution paths (i.e. branches) to be 
possible



Liveness Analysis: Specification
Define a function LIVE : Expression -> Set(Variable)

• LIVE(x) = { x }

• LIVE(n) = { }

• LIVE(Prim(op, [imm1,...])) = LIVE(imm1) U ...

• LIVE(call(f; [imm1,...])) = LIVE(imm1) U ...

• LIVE(x = op in b) = (LIVE(b) - x) U LIVE(op)

• LIVE(br f(imm,...)) = (LIVE(f.body) - f.args) U LIVE(imm1) U ...

• LIVE(cbr imm: f else: g) = LIVE(imm) U LIVE(f.body) U LIVE(g.body)

• LIVE(ret imm) = LIVE(imm)



Liveness Analysis: Specification
Our definition of liveness is recursive because our blocks are recursive:

- if a block f includes a branch to itself, the live variables in f will depend on 
the live variables in f...

- if multiple blocks mutually recursively branch to each other, we have the 
same issue.

This means our specification is not well-formed.

Solution: we want the minimal solution to our recursive equations.

To implement this, we initialize all blocks to have 0 live variables, and 
iteratively improve this information, using the previous round's 
information each time.

An example of a general process called dataflow analysis, more on this 
later



Liveness Analysis: Example

In the sub-expression B, which 
variables are 

In scope: 
Syntactically occurring:

Live: 

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

B 



Liveness Analysis: Example

In the sub-expression B, which 
variables are 

In scope: x,y,z,i,a,i' 
Syntactically occurring: x,a,a',i'
Live: x,z,a,i' 

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

B 



Liveness Analysis: Example

In the sub-expression B, which 
variables are 

In scope: x,y,z,i,a,i' 
Syntactically occurring: x,a,a',i'
Live: x,z,a,i' 

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

B 



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

1:   { } 
2:   { } 
3:   { } 
4:   { } 
5/6: { } 
7:   { } 
8/9: { } 
10:  { } 
11:  { } 

Round 0

1:   ? 
2:   ? 
3:   ? 
4:   ? 
5/6: ? 
7:   ? 
8/9: ? 
10:  ? 
11:  ? 

Round 1



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

1:   { } 
2:   { } 
3:   { } 
4:   { } 
5/6: { } 
7:   { } 
8/9: { } 
10:  { } 
11:  { } 

Round 0

1:   {x,z} 
2:   {y} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x} 
10:  {a,i',x} 
11:  {a',i'} 

Round 1



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

Round 1 Round 2

1:   {x,z} 
2:   {y} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x} 
10:  {a,i',x} 
11:  {a',i'} 

1:   ? 
2:   ? 
3:   ? 
4:   ? 
5/6: ? 
7:   ? 
8/9: ? 
10:  ? 
11:  ? 



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

Round 1 Round 2

1:   {x,z} 
2:   {y} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x} 
10:  {a,i',x} 
11:  {a',i'} 

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

Round 2 Round 3

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 

1:   ? 
2:   ? 
3:   ? 
4:   ? 
5/6: ? 
7:   ? 
8/9: ? 
10:  ? 
11:  ? 



Liveness Analysis: Example

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

Round 2 Round 3

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 



Liveness Analysis: Example

In the sub-expression B, which 
variables are 

In scope: x,y,z,i,a,i' 
Syntactically occurring: x,a,a',i'
Live: x,z,a,i' 

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

B 



Implementation Concerns
How to store live sets?

• Add annotation metadata to the SSA AST
- init_liveness(e: BB<T>) -> BB<HashSet<String>> 
- update_liveness(e: BB<HashSet<String>>) -> BB<HashSet<String>> 

• iterate until you reach a fixed point
- update_liveness(b) == b



Conflict Analysis
Once we know when we need the value of each variable, we 
determine which variables cannot be assigned the same 
register

2 variables truly conflict when

• They are live at the same time

• with different values

Err on the side of *too many* conflicts.



Conflict Analysis
Simple approach:

• Initialize the graph with all variables in the program

• Add a clique of edges for every live set

This is an overapproximation to true conflicts

f(y): 
  y = x 
  z = x + y 
  ret z 



Conflict Analysis

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 

x

y

z

i a

i' a'

b r



Conflict Analysis

f(x,y,z): 
  loop(i,a): 
    thn(): 
      r = a * z 
      ret r 
    els(): 
      i' = i - 1 
      a' = a + x 
      br loop(i', a') 
    b = i == 0 
    cbr b thn() els() 
  br loop(y, 0) 

5 
1 

3 
4 

2 

6 
7 

9 

10 
11 

8 

1:   {x,z} 
2:   {x,y,z} 
3:   {a,i,x,z} 
4:   {a,b,i,x,z} 
5/6: {a,z} 
7:   {r} 
8/9: {a,i,x,z} 
10:  {a,i',x,z} 
11:  {a',i',x,z} 

x

y

z

i a

i' a'

b r



Summary so Far
For each top level function in the program

1. Liveness Analysis determines at every program point what 
variables are live

2. Conflict Analysis produces a conflict graph whose nodes 
are variables and edges are conflicts (the variables cannot 
share a register)

3. Next time: Use this conflict graph to assign registers to 
variables, and generate more efficient code


