EECS 483: Compiler Construction

Lecture 16:
Register Allocation Part 1: Liveness Analysis

March 17
Winter Semester 2025

Announcements

- Exam tomorrow evening, March 18 6-8pm.
- Location: 3 rooms in DOW. Which room is determined by your unigname;
- DOW1010 if your unigname starts with A-JO
- DOW1017 if your unigname starts with JS-R
- DOW1018 if your unigname starts with S-Z
- Bring your own pen/pencil.
- 1 page of notes ("cheat sheet") allowed.
- Standard letter size
- Typed or hand-written ok
Assignment 4 released on Wednesday.

2

Where Were We?

We've discussed so far how to compile many features correctly

(functional correctness) only worrying about preserving asymptotic
complexity.

But our generated code has high constant factors in its complexity:
- Use stack-allocation for all local variables.
- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile
time

Live code example

Where Were We?

We've discussed so far how to compile many features correctly

(functional correctness) only worrying about preserving asymptotic
complexity.

But our generated code has high constant factors in its complexity:
- Use stack-allocation for all local variables.
- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile
time

Where Were We?

We've discussed so far how to compile many features correctly

(functional correctness) only worrying about preserving asymptotic
complexity.

But our generated code has high constant factors in its complexity:
- Use stack-allocation for all local variables.
- Many redundant dynamic type checks

- Simple arithmetic is preserved even if we can evaluate it at compile
time

Memory Hierarchy

256B - 8KB 0.25 - 1ns
16KB - 64KB 1ns - 5ns
1MB -4MB 5ns - 25ns
4GB - 256GB 25ns - 100ns
500GB+ 3 - 10ms
HUGE 10 - 2000ms

Registers
Systems L1 Cache
. L2 Cache
view Of Main Memory
memaory. Hard Disk
Network
Snake/SSA variables, heap allocated objects
view of

memory

Memory Allocation for Locals

For code generation, we need to map our SSA local variables to
memory locations where they are stored.

Current strategy:

Allocate all variables onto the stack, based on nesting of the
current scope.

Not completely naive: we do re-use some stack space Iin nested
sub-blocks

Big Performance hit: need to move values in and out of registers
frequently.

Register Allocation

For code generation, we need to map our SSA local variables to memory
locations where they are stored.

Goal:
Store variable's values in registers whenever possible.
Only use stack space if we run out of registers.

Performance gains;

» 3-10x+ faster variable accesses (by far the most important
optimization for a compiler)

» Space gain: smaller stack frames
High computational complexity: often the slowest part of the compiler

Register Allocation Examples

Register Allocation Examples

f(a):
X = a x 2
y = X + /

ret y

Register Allocation Examples

f(a): Currently:
X = a % 2 a: stack [rsp — 8]
y = X + 7 x: stack [rsp - 16]

ret y y: stack [rsp - 32]

Register Allocation Examples

f(a): With register alloc:
X = a % 2 a: rax
y = X + 7 X: rax

ret y y: rax

Register Allocation Examples

f(a): With register alloc:
X = a % 2 a: rax
y = X + 7 X: rax
ret y Vi rax
. assertint

sar rax, 1
imul rax, 4

. assertlnt
add rax, 14
ret

14

Register Allocation Examples

f(a): With register alloc:
X = a %k 2 a: rax
y = X + / X: rax
Z = X XYV V: rcx
ret z Z: rax

Can’t put x and y in the same register
Say they are in conflict or interfering

15

Register Allocation: Graph Coloring Approach

The best register allocation
algorithms (in terms of quality of
output, not efficiency) use graph
coloring

Graph coloring problem:

Given a graph (V, E) and set of -
colors K assign each variable a
color so that adjacent nodes all
have different colors.

16

Register Allocation: Graph Coloring Approach

Graph Coloring register allocation:

Make an interference graph:
vertices are variables, edges are
Interference relationships

Colors are the different registers

A solution is a valid register
assignment

Fax

17

Register Allocation Overview

Break down into three tasks:

1. Liveness analysis: determine which values are needed at every
program point

2. Conflict analysis: use liveness info to construct interference graph

3. Graph coloring: attempt to color the interference graph, spilling
variables onto the stack if no solution can be found

More complicated In practice because registers are not all treated the
same (argument/return registers, caller/callee-save, shift instructions)

18

Liveness Analysis

One of the most fundamental analyses a compiler performs is liveness
analysis.

Used to determine at each program point which variables are live, I.e.,
which variables’ values need to be available at runtime.

Example uses:

- Lambda lifting: the arguments that need to be added in lambda lifting
are exactly the live ones

- Register allocation: only need to store all of the live variables in registers/
the stack. Means we can re-use space when a variable is no longer live.

- Function calls: only need to save the values of caller-save reqgisters if the
value is live

19

Liveness Analysis

Semantic definition:

a variable x is live in a block b (or expression, operation, etc) if the
observable behavior of b depends on the value of x.

Can be done for ASTs or SSA blocks

- ASTs: determining what values are captured for lambda lifting/
closure conversion

- SSA: determining interference for register allocation

20

Liveness Examples

is X live?

Liveness Examples

is X live?

Yes

Liveness Example

is X live?

Yes

Liveness Example

is X live?

if b is ever
true, yes

1f b: X else: vy

otherwise no

Liveness Example

is X live?

let b = true 1n AL

1f b: X else: vy

Liveness Example

is X live?

let b = false 1n
1f b: X else: vy

no

Liveness Example

is X live?

let b = read_input() in A

1f b: X else: vy

Liveness Example

is X live?
let b = complex_fn() in if complex_fn ever
1t b: x else: y returns true:yes,

otherwise: no

Limitation: Computability

Determining correct liveness information requires
determining the possible values produced by arbitrary
functions...

Rice's Theorem:

Any non-trivial semantic property of programs in a Turing-
complete language is undecidable

Determining liveness of variables is undecidable!

Limitation: Computability

Determining correct liveness information can be arbitrarily
complicated...

What if we determined incorrect liveness information

sometimes’?

* false positives: sometimes we say a variable is live when it's
not

* false negatives: sometimes we say a variable is not live
when it is

False positives are ok: we will just use more registers/space
than necessary

Limitation: Computability

Goal: Overapproximate

The output of our liveness analysis should include every
variable that is live, but possibly some that are not live.

Approach so far in class: Use scope as our liveness analysis

* This is an overapproximation: a variable can't be live if it's
not in scope

We can do much better
* Only consider variables live if they actually get used

* But consider all execution paths (i.e. branches) to be
possible

Liveness Analysis: Specification

Define a function LIVE : Expression -> Set(Variable)
® LIVE(x) ={x}
® LIVE(n)={}
® |LIVE(Prim(op, [imml,...])) = LIVE(imml) U ...
® |IVE(call(f; [imml,...])) = LIVE(imml) U ...
® |IVE(x = opin b) = (LIVE(b) - x) U LIVE(op)
® |LIVE(br f(imm,...)) = (LIVE(f.body) - f.args) U LIVE(imm|) U ...
® |IVE(cbr imm:f else: g) = LIVE(imm) U LIVE(f.body) U LIVE(g.body)
® ||IVE(ret imm) = LIVE(imm)

Liveness Analysis: Specification

Our definition of liveness is recursive because our blocks are recursive:

- if a block f includes a branch to itself, the live variables in f will depend on
the live variables in f...

- if multiple blocks mutually recursively branch to each other, we have the
same Issue.

This means our specification is not well-formed.
Solution: we want the minimal solution to our recursive equations.

To implement this, we initialize all blocks to have 0 live variables, and
iteratively improve this information, using the previous round's
information each time.

An example of a general process called dataflow analysis, more on this
later

Liveness Analysis: Example

f(x,y,z):

loop(i,a):
thn():

r=a x z

ret r
els():

i''=1-1

a' = a + X

br loop(i', a')
b = i ==
cbr b thn() els()
br loop(y, 0)

In the sub-expression B, which
variables are

In scope:
Syntactically occurring:

Live:

Liveness Analysis: Example

f(x,y,z):
loop(i,a):
thn():
r=axz2 In the sub-expression B, which
ret r variables are
els():
i' =1 -1 In scope: X,Yy,z,1,a,1’
5 ar = a + x Syntactically occurring: X,a,a"', 1’
br loop(i', a') Live:x,2z,a, 1"’
b = 1 ==

cbr b thn() els()
br loop(y, 0)

Liveness Analysis: Example

f(x,y,z):
loop(i,a):
thn():
r=axz2 In the sub-expression B, which
ret r variables are
els():
i' =1 -1 In scope: X,Yy,z,1,a,1’
5 ar = a + x Syntactically occurring: X,a,a"', 1’
br loop(i', a') Live:x,2z,a, 1"’
b = 1 ==

cbr b thn() els()
br loop(y, 0)

Liveness Analysis: Example

Round 0 Round |

f(x,y,z):
"oop(i,a): 1- { } 1- ?

*thn():
gr(ia*z 2: 1} 2: 7
7re’c r 3: { } 3: I
Se}f”: | 4: {} 4: ?
9, . 5/6: { } 5/61 7
br loop(i', a') 7: {1} 7: 7
b=i=0 8/9: { } 8/9: 7

cbr b thn() els()

2br loop(y, 0) 10: { } 10: 7
11: { } 11: 7

Liveness Analysis: Example

f(X;Y;Z):
1loap(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

10 ,
a' = a + X
1
1br loop(i', a')
3[) = 1 == 0
4

cbr b thn() els()
2br loop(y, 0)

Round O

> W N =

5/0:

3/9:

10:
11:

~

B T S N = S SN

e i sl adie sdie e i el el =

Round |
1: {x,z}
2: {y}
3: {a,i,x,z}
4: {a,b,1i,x,z}
5/6: {a,z}
7: {r}
8/9: {a,i,x}
10: {a,i',x}
11: {a',i'}

Liveness Analysis: Example

Round | Round 2
f(x,y,z):
"oop(i,a): 1- {X,Z} 1- ?
Ythn() : i .
6 — = % 2: 1y} 2: ?
‘ret r 3 {a,i,x,z} 3 7
Se}f”: 4: {a,b,1i,x,z} 4: ?
i'=1i-1
10, _ ., . 5/6: {a,z} 5/6: 7
'br loop(i', a') 7: {r} 7: 7
p=i=o0 3/9: {a,i,x} 8/9: ?
cbr b thn() els() o
2br loop(y, 0) 10: {a;l ;X} 10: 7
11: {a',i'} 11: 7

Liveness Analysis: Example

f(X;Y;Z):
1loop(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

10 ,
a' = a + X
1
1br loop(i', a')
3[) = 1 == 0
4

cbr b thn() els()
2br loop(y, 0)

Round |

{x,2}

1y}
{a,i,x,z}
{a,b,1i,x,z}
{a, z}

{r}

{a,i,x}
{a,i',x}

1a',1'}

>~ W N -
B~ W N =

5/06: 5/0:
3/9:
10:
11:

3/9:
10:
11:

Round 2

{x,2}
{X,Y,2}
{a,1,x,z}
{a,b,1i,x,z}
{a,z}

{rk
{a,1,x,z}
{a,1',x,z}
{a',1',x,z}

Liveness Analysis: Example

Round 2 Round 3
f(x,y,z):
"oop(i,a): 1- {X,Z} 1- ?
*thn() :
6:=a>|<z 2: {X,V¥,z2} 2: ?
‘ret r 3 {a,i,x,z} 3 7
86}35(” 4: {a,b,1i,x,z} 4: [
1' =1 -1
10, _ ., . 5/6: {a,z} 5/6: 7
br loop(i', a') 7: Ar} 7: 7
p=i=0 3/9: {a,i,x,z} 8/9: 7
cbr b thn() els() .
%o oob(y, 0) 10: {{a,i',x,z} 10: 7?
11: {a',i',x,z} 11: 7

Liveness Analysis: Example

f(X;Y;Z):
1loop(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

10 ,
a' = a + X
1
1br loop(i', a')
3[) = 1 == 0
4

cbr b thn() els()
2br loop(y, 0)

Round 2
1: {x,z}
2: {X,V¥,z2}
3: {a,i,x,z}
4: {a,b,i,x,z}
5/6: {a,z}
7: {r}
8/9: {a,1i,x,z}
10: {a,1i',x,z}

11:

{a',i',x,z}

Round 3
1: {x,z}
2: {X,V¥,z2}
3: {a,i,x,z}
4: {a,b,i,x,z}
5/6: {a,z}
7: {r}
8/9: {a,1i,x,z}
10: Ka,1i',x,z}

11:

{a',i',x,z}

Liveness Analysis

- Example

f(X;Y;Z):
1locp(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

B 10a' = a + X
1
1br loop(i', a')
b =i==0
A4

cbr b thn() els()
2br loop(y, 0)

~ W N -

5/0:

3/9:

10:
11:

{X,z}
{X,Y,2}
{a,1,x,z}
{a,b,1,x,z}
{a,z}

{r’}
{a,1,x,z}
{a,1',x,z}
{a',1',x,z}

In the sub-expression B, which

variables are

In scope: X,Yy,z,1,a,1’

Syntactically occurring: X,a,a’, 1’

Live: X,z,a,1"'

Implementation Concerns

How to store live sets!

e Add annotation metadata to the SSA AST

—init_liveness(e: BB<T>) —> BB<HashSet<String>>
—update_liveness(e: BB<HashSet<String>>) —> BB<HashSet<String>>

* iterate until you reach a fixed point

— update_liveness(b) ==

Conflict Analysis

Once we know when we need the value of each variable, we
determine which variables cannot be assighed the same
register

2 variables truly conflict when
* They are live at the same time

e with different values

Err on the side of *too many* conflicts.

Conflict Analysis

Simple approach:
* |nitialize the graph with all variables in the program
* Add a clique of edges for every live set

This is an overapproximation to true conflicts

f(y):
y =X
Z =X + Y

ret z

Conflict Analysis

f(X;Y;Z):
1loop(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

10 ,
a' = a + X
1
1br loop(i', a')
b =i==0
4

cbr b thn() els()
2br loop(y, 0)

>~ W N =

5/0:

3/9:

10:
11:

{x,2}
{X,Y,2}
{a,1,x,z}
{a,b,1,x,z}
{a,z}

{r}
{a,1,x,z}
{a,1',x,z}
{a',1',x,z}

Conflict Analysis

f(X;Y;Z):
1loop(i,a) :

*thn():

6r=a>|<z

7re’c r

8els():

9i'=i—1

10 ,
a' = a + X
1
1br loop(i', a')
b =i==0
4

cbr b thn() els()
2br loop(y, 0)

>~ W N =

5/0:

3/9:

10:
11:

{x,2}
{X,Y,2}
{a,1,x,z}
{a,b,1,x,z}
{a,z}

{r}
{a,1,x,z}
{a,1',x,z}
{a',1',x,z}

) —— @)

an >
RO

& ©

@)

Summary so Far

For each top level function in the program

|. Liveness Analysis determines at every program point what
variables are live

2. Conflict Analysis produces a conflict graph whose nodes
are variables and edges are conflicts (the variables cannot

share a register)

3. Next time: Use this conflict graph to assign registers to
variables, and generate more efficient code

