
March 10
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 14:
Memory Management, Garbage Collection

1

Slides adapted from David Walker, Cornell University

Announcements

2

Midterm on Tuesday, March 18, 6-8pm.

Topics: anything covered in assignments 1-3 and lecture material
before spring break

Rooms DOW1010, DOW1017, DOW1018

Midterm review in lecture March 12 (previously said March 17) and in
Discussion this week bring questions about course material.

Assignment 4 (dynamic typing, heap allocation) released after the
midterm

Memory Deallocation and Reuse

• Every modern programming language allows
programmers to allocate new storage
dynamically

– New records, arrays, tuples, objects, closures, etc.
• Every modern language needs facilities for

reclaiming and recycling the storage used by
programs

• It’s usually the most complex aspect of the run-
time system for any modern language.

• Memory used for an object can be reused
if it is garbage

• What is garbage?
– A value is garbage if it will not be used in any

subsequent computation by the program
• How do we determine which objects are

garbage?

Memory Deallocation and Reuse

Identifying Garbage
• How do we determine which objects are garbage?
• Stack-allocation:

• when we return or tail call, all objects in the stack frame
are garbage so that memory can be reused.

• See: our implementation of return, branch with
arguments

• this is an under-approximation. Objects allocated on
the stack may remain long after they are no longer used.

• Is it easy to determine which objects are garbage?
– No. It’s undecidable. Eg:
		 	 if long-and-tricky-computation then use v
		 	 else don’t use v

• Since determining which objects are
garbage is tricky, people have come up
with many different techniques

– It’s the programmers problem:
• Explicit allocation/deallocation

– Reference counting
– Tracing garbage collection

• Mark-sweep, copying collection
• Generational GC

Identifying Garbage

Explicit MM

• User library manages memory; programmer
decides when and where to allocate and
deallocate

– void* malloc(long n)
– void free(void *addr)
– Library calls OS for more pages when necessary
– Advantage: if you work hard, you can free at the exact

right time for their program
– Disadvantage: people don’t want to bother with such

details if they can avoid it
– Disadvantage: difficult to get right, dangerous when

wrong

Explicit MM

• How does malloc/free work?
– Blocks of unused memory stored on a freelist
– malloc: search free list for usable memory block
– free: put block onto the head of the freelist

freelist

Explicit MM

• Drawbacks
– malloc is not free: we might have to do a

significant search to find a big enough block
– As program runs, the heap fragments leaving

many small, unusable pieces

freelist

Explicit MM

• Solutions:
– Use multiple free lists, one for each block size

• Malloc and free become O(1)
• But can run out of size 4 blocks, even though there are many size

6 blocks or size 2 blocks!
– Blocks are powers of 2

• Subdivide blocks to get the right size
• Adjacent free blocks merged into the next biggest size

– Still doesn't avoid fragmentation
• 30% wasted space
• No magic bullet: memory management always has a cost

Automatic MM

• Languages with explicit MM are much harder to
program than languages with automatic MM

– Always worrying about dangling pointers, memory leaks:
a huge software engineering burden with mistakes often
leading to security vulnerabilities

– Languages with unsafe, explicit MM are on the way out.
Alternatives like Rust are being incorporated into high-
performance settings like Linux kernel and web
browsers.

– Biden administration even instituted an executive order
recommending new software be written in memory-safe
languages!

Automatic MM

• Question: how do we decide which objects
are garbage?

– We conservatively approximate
– Normal solution: an object is garbage when it

becomes unreachable from the roots
• The roots = registers, stack, global static data
• If there is no path from the roots to an object, it cannot

be used later in the computation so we can safely
recycle its memory

Object Graph

– How should we test reachability?

r1

stack
r2

Reference Counting

• Keep track of the number of pointers to
each object (the reference count).

• When the reference count goes to 0, the
object is unreachable garbage

Object Graph

– Reference counting can’t detect cycles

r1

stack
r2

Reference Counting

– In place of a single assignment x.f = p:

z = x.f
c = z.count
c = c – 1
z.count = c
If c = 0 call putOnFreeList(z)
x.f = p
c = p.count
c = c + 1
p.Count = c

- Ouch, that hurts
performace-wise!
- Dataflow analysis can
eliminate some increments
and decrements, but many remain
- Reference counting used in
some special cases but not
usually as the primary GC
mechanism in a language
implementation

Mark-sweep

• A two-phase algorithm
– Mark phase: Depth first traversal of object graph

from the roots to mark live data
– Sweep phase: iterate over entire heap, adding

the unmarked data back onto the free list

Example

Free list

r1

In use

On free list

Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots

Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots

Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots

Example

Free list r1
In use

On free list

Marked

Sweep Phase: set up sweep pointer; begin sweep

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase: add unmarked blocks to free list

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase: retain & unmark marked blocks

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase

p

Example

Free list r1
In use

On free list

Marked

Sweep Phase: GC complete when heap boundary
encountered; resume program

p

Cost of Mark Sweep
• Cost of mark phase:

– O(R) where R is the # of reachable words
– Assume cost is c1 * R (c1 may be 10 instr’s)

• Cost of sweep phase:
– O(H) where H is the # of words in entire heap
– Assume cost is c2 * H (c2 may be 3 instr’s)

• Analysis
– Each collection returns H - R words
– For every allocated word, we have GC cost:

• ((c1 * R) + (c2 * H)) / (H - R)
– R / H must be sufficiently small or GC cost is high
– Eg: if R / H is larger than .5, increase heap size

• Mark-sweep requires extra space like copying collection

A Hidden Cost

• Depth-first search is usually implemented
as a recursive algorithm

– Uses stack space proportional to the longest
path in the graph of reachable objects
• one activation record/node in the path
• activation records are big

– If the heap is one long linked list, the stack
space used in the algorithm will be greater than
the heap size!!

– What do we do?

A nifty trick

• Deutsch-Schorr-Waite pointer reversal
– Rather using a recursive algorithm, reuse the

components of the graph you are traversing to
build an explicit stack

– This implementation trick only demands a few
extra bits/block rather than an entire activation
record/block

– We already needed a few extra bits per block to
hold the “mark” anyway

DSW Algorithm

…

back next

DSW Algorithm

…

back next

…

back next

DSW Algorithm

…

back next

…

back next

…

back

next

DSW Algorithm

…

back next

…

back next

…

back

next

…

back

next

DSW Algorithm

…

back next

…

back next

…

back

next

…

back

next

• extra bits needed to keep track of which
record fields we have processed so far

DSW Setup

• Extra space required for sweep:
– 1 bit/record to keep track of whether the record has

been seen (the “mark bit”)
– f log 2 bits/record where f is the number of fields in the

record to keep track of how many fields have been
processed
• assume a field of each record x: x.done

• Functions:
– mark x = sets x’s mark bit
– marked x = true if x’s mark bit is set
– pointer x = true if x is a pointer
– fields x = returns number of fields in the record x

More Mark-Sweep

• Mark-sweep collectors can benefit from the tricks
used to implement malloc/free efficiently

– multiple free lists, one size of block/list
• Mark-sweep can suffer from fragmentation

– blocks not copied and compacted like in copying
collection

• Mark-sweep maximum space usage is the total
heap size

– but if the ratio of live data to heap size is too large then
performance suffers

Copying Collection

• Basic idea: use 2 heaps
– One used by program
– The other unused until GC time

• GC:
– Start at the roots & traverse the reachable data
– Copy reachable data from the active heap (from-space)

to the other heap (to-space)
– Dead objects are left behind in from space
– Heaps switch roles

Copying Collection

to-spacefrom-space

roots

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root

scan

next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root

scan

next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root
scan

next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root scan

next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root scan

next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root
scan
next

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root
scan
next

Done when
next = scan

Copying GC

• Cheny’s algorithm for copying collection
– Traverse data breadth first, copying objects from

from-space to to-space

root
scan
next

Done when
next = scan

Copying GC

• Pros
– Simple & collects cycles
– Run-time proportional to # live objects
– Automatic compaction eliminates fragmentation
– Fast allocation: pointer increment by object size

• Cons
– Precise type information required (pointer or not)

• Tag bits take extra space; normally use header word
– Twice as much memory used as program requires

• Usually, we anticipate live data will only be a small fragment of
store

• Allocate until 70% full
• From-space = 70% heap; to-space = 30%

– Long GC pauses = bad for interactive, real-time apps

Generational GC

• Empirical observation: if an object has
been reachable for a long time, it is likely to
remain so

• Empirical observation: in many languages
(especially functional languages), most
objects died young

• Conclusion: we save work by scanning the
young objects frequently and the old
objects infrequently

Generational GC

• Assign objects to different generations G0,
G1,…

– G0 contains young objects, most likely to be
garbage

– G0 scanned more often than G1
– Common case is two generations (new,

tenured)
– Roots for GC of G0 include all objects in G1 in

addition to stack, registers

Generational GC

• How do we avoid scanning tenured objects?
– Observation: old objects rarely point to new objects

• Normally, object is created and when it initialized it will point to
older objects, not newer ones

• Only happens if old object modified well after it is created
• In functional languages that use mutation infrequently, pointers

from old to new are very uncommon
– Compiler inserts extra code on object field pointer write

to catch modifications to old objects
– Remembered set is used to keep track of objects that

point into younger generation. Remembered set
included in set of roots for scanning.

Generational GC

• Other issues
– When do we promote objects from young

generation to old generation
• Usually after an object survives a collection, it will be

promoted
– How big should the generations be?

• Appel says each should be exponentially larger than
the last

– When do we collect the old generation?
• After several minor collections, we do a major

collection

Generational GC

• Other issues
– Sometimes different GC algorithms are used for

the new and older generations.
• Why? Because the have different characteristics

– Copying collection for the new
• Less than 10% of the new data is usually live
• Copying collection cost is proportional to the live data

– Mark-sweep for the old

Conservative Collection
• Even languages like C can benefit from GC

– Boehm-Weiser-Demers conservative GC uses heuristics to determine
which objects are pointers and which are integers without any
language support
• last 2 bits are non-zero => can’t be a pointer
• integer is not in allocated heap range => can’t be a pointer
• mark phase traverses all possible pointers
• conservative because it may retain data that isn’t reachable

– thinks an integer is actually a pointer
– since it does not copy objects (thereby changing pointer values), mistaking

integers for pointers does not hurt
• all gc is conservative anyway so this is almost never an issue (despite what

people say)
• sound if your program doesn’t manufacture pointers from integers by, say,

using xor (using normal pointer arithmetic is fine)

Compiler Interface

• The interface to the garbage collector involves
two main parts

– allocation code
• languages can allocate up to approx 1 word/7 instructions
• allocation code must be blazingly fast!
• should be inlined and optimized to avoid call-return overhead

– gc code
• to call gc code, the program must identify the roots
• to traverse data, heap layout must be specified somehow

Allocation Code
Assume size of record allocated is N:

1. Call alloc code
2. Test next + N < limit (call gc on failure)
3. Move next into function result
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc code
7. Move result into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

Allocation Code

Assume size of record allocated is N:
1. Call alloc function
2. Test next + N < limit (call gc on failure)
3. Move next into function result
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc function
7. Move result into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

useful computation
not alloc overhead

Allocation Code

Assume size of record allocated is N:
1. Call alloc function
2. Test next + N < limit (call gc on failure)
3. Move next into function result
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc function
7. Move result into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

inline
alloc
code

Allocation Code

Assume size of record allocated is N:
1. Call alloc function
2. Test next + N < limit (call gc on failure)
3. Move next into computationally useful place
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc function
7. Move next into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

combine
moves

Allocation Code

Assume size of record allocated is N:
1. Call alloc function
2. Test next + N < limit (call gc on failure)
3. Move next into computationally useful place
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc function
7. Move next into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

eliminate
useless
store

Allocation Code

Assume size of record allocated is N:
1. Call alloc function
2. Test next + N < limit (call gc on failure)
3. Move next into computationally useful place
4. Clear M[next], ..., M[next + N – 1]
5. next = next + N
6. Return from alloc function
7. Move next into computationally useful place
8. Store useful values into M[next],....,M[next + N - 1]

total overhead for allocation on the order of 3 instructions/alloc

Calling GC code

• To call the GC, program must:
– identify the roots:

• a GC-point, is an control-flow point where the garbage
collector may be called
– allocation point; function call

• for any GC-point, compiler generates a pointer map
that says which registers, stack locations in the current
frame contain pointers

• a global table maps GC-points (code addresses) to
pointer maps

• when program calls the GC, to find all roots:
– GC scans down stack, one activation record at a time, looking

up the current pointer map for that record

Calling GC code

• To call the GC, program must:
– enable GC to determine data layout of all

objects in the heap
– every record has a header with size and pointer info

• in object oriented languages like Java:
– each object has an extra field that points to class definition
– gc uses class definition to determine object layout including size

and pointer info

Summary

• Garbage collectors are a complex and
fascinating part of any modern language
implementation

• Different collection algs have pros/cons
– explicit MM, reference counting, copying, generational,

mark-sweep
– all methods, including explicit MM have costs
– optimizations make allocation fast, GC time, space and

latency requirements acceptable
– additional reading: Appel Chapter 13

