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Slides adapted from David Walker, Cornell University



Announcements

2

Midterm on Tuesday, March 18, 6-8pm.

Topics: anything covered in assignments 1-3 and lecture material 
before spring break

Rooms DOW1010, DOW1017, DOW1018


Midterm review in lecture March 12 (previously said March 17) and in 
Discussion this week bring questions about course material.


Assignment 4 (dynamic typing, heap allocation) released after the 
midterm



Memory Deallocation and Reuse

• Every modern programming language allows 
programmers to allocate new storage 
dynamically 

– New records, arrays, tuples, objects, closures, etc. 
• Every modern language needs facilities for 

reclaiming and recycling the storage used by 
programs 

• It’s usually the most complex aspect of the run-
time system for any modern language.



• Memory used for an object can be reused 
if it is garbage 

• What is garbage? 
– A value is garbage if it will not be used in any 

subsequent computation by the program 
• How do we determine which objects are 

garbage?

Memory Deallocation and Reuse



Identifying Garbage
• How do we determine which objects are garbage? 
• Stack-allocation:  

• when we return or tail call, all objects in the stack frame 
are garbage so that memory can be reused. 

• See: our implementation of return, branch with 
arguments 

• this is an under-approximation. Objects allocated on 
the stack may remain long after they are no longer used. 

• Is it easy to determine which objects are garbage? 
– No.  It’s undecidable. Eg: 
		 	 if long-and-tricky-computation then use v 
		 	 else don’t use v



• Since determining which objects are 
garbage is tricky, people have come up 
with many different techniques 

– It’s the programmers problem:  
• Explicit allocation/deallocation 

– Reference counting 
– Tracing garbage collection 

• Mark-sweep, copying collection 
• Generational GC

Identifying Garbage



Explicit MM

• User library manages memory; programmer 
decides when and where to allocate and 
deallocate 

– void* malloc(long n) 
– void free(void *addr) 
– Library calls OS for more pages when necessary 
– Advantage: if you work hard, you can free at the exact 

right time for their program 
– Disadvantage: people don’t want to bother with such 

details if they can avoid it 
– Disadvantage: difficult to get right, dangerous when 

wrong



Explicit MM

• How does malloc/free work? 
– Blocks of unused memory stored on a freelist 
– malloc: search free list for usable memory block 
– free: put block onto the head of the freelist

freelist



Explicit MM

• Drawbacks 
– malloc is not free:  we might have to do a 

significant search to find a big enough block 
– As program runs, the heap fragments leaving 

many small, unusable pieces

freelist



Explicit MM

• Solutions: 
– Use multiple free lists, one for each block size 

• Malloc and free become O(1) 
• But can run out of size 4 blocks, even though there are many size 

6 blocks or size 2 blocks! 
– Blocks are powers of 2 

• Subdivide blocks to get the right size 
• Adjacent free blocks merged into the next biggest size 

– Still doesn't avoid fragmentation 
• 30% wasted space 
• No magic bullet:  memory management always has a cost



Automatic MM

• Languages with explicit MM are much harder to 
program than languages with automatic MM 

– Always worrying about dangling pointers, memory leaks:  
a huge software engineering burden with mistakes often 
leading to security vulnerabilities  

– Languages with unsafe, explicit MM are on the way out. 
Alternatives like Rust are being incorporated into high-
performance settings like Linux kernel and web 
browsers. 

– Biden administration even instituted an executive order 
recommending new software be written in memory-safe 
languages!



Automatic MM

• Question: how do we decide which objects 
are garbage? 

– We conservatively approximate 
– Normal solution:  an object is garbage when it 

becomes unreachable from the roots 
• The roots = registers, stack, global static data 
• If there is no path from the roots to an object, it cannot 

be used later in the computation so we can safely 
recycle its memory



Object Graph

– How should we test reachability?

r1

stack
r2



Reference Counting

• Keep track of the number of pointers to 
each object (the reference count). 

• When the reference count goes to 0, the 
object is unreachable garbage



Object Graph

– Reference counting can’t detect cycles

r1

stack
r2



Reference Counting

– In place of a single assignment x.f = p:

z = x.f 
c = z.count 
c = c – 1 
z.count = c 
If c = 0 call putOnFreeList(z) 
x.f = p 
c = p.count 
c = c + 1 
p.Count = c

- Ouch, that hurts  
performace-wise! 
- Dataflow analysis can  
eliminate some increments  
and decrements, but many remain 
- Reference counting used in 
some special cases but not  
usually as the primary GC  
mechanism in a language 
implementation



Mark-sweep

• A two-phase algorithm 
– Mark phase: Depth first traversal of object graph 

from the roots to mark live data 
– Sweep phase:  iterate over entire heap, adding 

the unmarked data back onto the free list



Example

Free list
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Example

Free list r1
In use

On free list

Marked

Sweep Phase: set up sweep pointer; begin sweep

p
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Free list r1
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Sweep Phase: add unmarked blocks to free list
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Example

Free list r1
In use

On free list

Marked

Sweep Phase: GC complete when heap boundary  
encountered; resume program

p



Cost of Mark Sweep
• Cost of mark phase:  

– O(R) where R is the # of reachable words 
– Assume cost is c1 * R (c1 may be 10 instr’s) 

• Cost of sweep phase: 
– O(H) where H is the # of words in entire heap 
– Assume cost is c2 * H (c2 may be 3 instr’s) 

• Analysis 
– Each collection returns H - R words 
– For every allocated word, we have GC cost: 

• ((c1 * R) + (c2 * H)) / (H - R) 
– R / H must be sufficiently small or GC cost is high 
– Eg: if R / H is larger than .5, increase heap size 

• Mark-sweep requires extra space like copying collection



A Hidden Cost

• Depth-first search is usually implemented 
as a recursive algorithm 

– Uses stack space proportional to the longest 
path in the graph of reachable objects  
• one activation record/node in the path 
• activation records are big 

– If the heap is one long linked list, the stack 
space used in the algorithm will be greater than 
the heap size!! 

– What do we do?



A nifty trick

• Deutsch-Schorr-Waite pointer reversal 
– Rather using a recursive algorithm, reuse the 

components of the graph you are traversing to 
build an explicit stack 

– This implementation trick only demands a few 
extra bits/block rather than an entire activation 
record/block 

– We already needed a few extra bits per block to 
hold the “mark” anyway



DSW Algorithm
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DSW Algorithm

…

back next

…

back next

…

back

next

…

back

next

• extra bits needed to keep track of which 
record fields we have processed so far



DSW Setup

• Extra space required for sweep: 
– 1 bit/record to keep track of whether the record has 

been seen (the “mark bit”) 
– f log 2 bits/record where f is the number of fields in the 

record to keep track of how many fields have been 
processed 
• assume a field of each record x: x.done 

• Functions: 
– mark x = sets x’s mark bit 
– marked x = true if x’s mark bit is set 
– pointer x = true if x is a pointer 
– fields x = returns number of fields in the record x



More Mark-Sweep 

• Mark-sweep collectors can benefit from the tricks 
used to implement malloc/free efficiently 

– multiple free lists, one size of block/list 
• Mark-sweep can suffer from fragmentation 

– blocks not copied and compacted like in copying 
collection 

• Mark-sweep maximum space usage is the total 
heap size 

– but if the ratio of live data to heap size is too large then 
performance suffers



Copying Collection

• Basic idea: use 2 heaps 
– One used by program 
– The other unused until GC time 

• GC: 
– Start at the roots & traverse the reachable data 
– Copy reachable data from the active heap (from-space) 

to the other heap (to-space) 
– Dead objects are left behind in from space 
– Heaps switch roles



Copying Collection

to-spacefrom-space

roots



Copying GC

• Cheny’s algorithm for copying collection 
– Traverse data breadth first, copying objects from 

from-space to to-space

root

scan

next
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Done when 
next = scan



Copying GC

• Pros 
– Simple & collects cycles 
– Run-time proportional to # live objects 
– Automatic compaction eliminates fragmentation 
– Fast allocation: pointer increment by object size 

• Cons 
– Precise type information required (pointer or not) 

• Tag bits take extra space; normally use header word 
– Twice as much memory used as program requires 

• Usually, we anticipate live data will only be a small fragment of 
store 

• Allocate until 70% full 
• From-space = 70% heap; to-space = 30% 

– Long GC pauses = bad for interactive, real-time apps



Generational GC

• Empirical observation: if an object has 
been reachable for a long time, it is likely to 
remain so 

• Empirical observation: in many languages 
(especially functional languages), most 
objects died young 

• Conclusion: we save work by scanning the 
young objects frequently and the old 
objects infrequently



Generational GC

• Assign objects to different generations G0, 
G1,… 

– G0 contains young objects, most likely to be 
garbage 

– G0 scanned more often than G1 
– Common case is two generations (new, 

tenured) 
– Roots for GC of G0 include all objects in G1 in 

addition to stack, registers



Generational GC

• How do we avoid scanning tenured objects? 
– Observation: old objects rarely point to new objects 

• Normally, object is created and when it initialized it will point to 
older objects, not newer ones 

• Only happens if old object modified well after it is created 
• In functional languages that use mutation infrequently, pointers 

from old to new are very uncommon 
– Compiler inserts extra code on object field pointer write 

to catch modifications to old objects 
– Remembered set is used to keep track of objects that 

point into younger generation.  Remembered set 
included in set of roots for scanning.



Generational GC

• Other issues 
– When do we promote objects from young 

generation to old generation 
• Usually after an object survives a collection, it will be 

promoted 
– How big should the generations be? 

• Appel says each should be exponentially larger than 
the last 

– When do we collect the old generation? 
• After several minor collections, we do a major 

collection



Generational GC

• Other issues 
– Sometimes different GC algorithms are used for 

the new and older generations. 
• Why? Because the have different characteristics 

– Copying collection for the new 
• Less than 10% of the new data is usually live 
• Copying collection cost is proportional to the live data 

– Mark-sweep for the old



Conservative Collection
• Even languages like C can benefit from GC 

– Boehm-Weiser-Demers conservative GC uses heuristics to determine 
which objects are pointers and which are integers without any 
language support 
• last 2 bits are non-zero => can’t be a pointer 
• integer is not in allocated heap range => can’t be a pointer 
• mark phase traverses all possible pointers 
• conservative because it may retain data that isn’t reachable 

– thinks an integer is actually a pointer 
– since it does not copy objects (thereby changing pointer values), mistaking 

integers for pointers does not hurt 
• all gc is conservative anyway so this is almost never an issue (despite what 

people say) 
• sound if your program doesn’t manufacture pointers from integers by, say, 

using xor (using normal pointer arithmetic is fine)



Compiler Interface

• The interface to the garbage collector involves 
two main parts 

– allocation code 
• languages can allocate up to approx 1 word/7 instructions  
• allocation code must be blazingly fast! 
• should be inlined and optimized to avoid call-return overhead 

– gc code 
• to call gc code, the program must identify the roots 
• to traverse data, heap layout must be specified somehow



Allocation Code
Assume size of record allocated is N: 

1. Call alloc code 
2. Test next + N < limit   (call gc on failure) 
3. Move next into function result 
4. Clear M[next], ..., M[next + N – 1] 
5. next = next + N 
6. Return from alloc code 
7. Move result into computationally useful place 
8. Store useful values into M[next],....,M[next + N - 1]
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Allocation Code

Assume size of record allocated is N: 
1. Call alloc function 
2. Test next + N < limit   (call gc on failure) 
3. Move next into computationally useful place 
4. Clear M[next], ..., M[next + N – 1] 
5. next = next + N 
6. Return from alloc function 
7. Move next into computationally useful place 
8. Store useful values into M[next],....,M[next + N - 1]

total overhead for allocation on the order of 3 instructions/alloc 



Calling GC code

• To call the GC, program must: 
– identify the roots: 

• a GC-point, is an control-flow point where the garbage 
collector may be called 
– allocation point; function call 

• for any GC-point, compiler generates a pointer map 
that says which registers, stack locations in the current 
frame contain pointers 

• a global table maps GC-points (code addresses) to 
pointer maps 

• when program calls the GC, to find all roots: 
– GC scans down stack, one activation record at a time, looking 

up the current pointer map for that record



Calling GC code

• To call the GC, program must: 
– enable GC to determine data layout of all 

objects in the heap 
– every record has a header with size and pointer info 

• in object oriented languages like Java: 
– each object has an extra field that points to class definition 
– gc uses class definition to determine object layout including size 

and pointer info



Summary

• Garbage collectors are a complex and 
fascinating part of any modern language 
implementation 

• Different collection algs have pros/cons 
– explicit MM, reference counting, copying, generational, 

mark-sweep 
– all methods, including explicit MM have costs 
– optimizations make allocation fast, GC time, space and 

latency requirements acceptable 
– additional reading: Appel Chapter 13


