
February 26
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 13:
Closures and First-class Functions Continued

1

Announcements

2

Assignment 3 (Procedures) due on Friday

Spring Break next week

Midterm on Tuesday, March 18, 6-8pm.

Second week after Spring Break

Topics: anything covered in assignments 1-3 and lecture material before spring break

Rooms DOW1010, DOW1017, DOW1018

Midterm review in lecture March 17, bring questions about course material.

After Spring Break:

optimization

frontend

Functions as Values

3

So far in our Snake language, functions are second class,
meaning that unlike integers/booleans/arrays:

- ordinary program variables cannot be functions

- functions can't be passed as arguments to other functions

- functions can't be returned as values from other functions

This restriction simplifies the job of the compiler, but is
uncommon in modern programming languages.

Functions as Values

4

Modern programming languages allow us to use functions as
first-class data

- Low level languages like C/C++ have function pointers,
which can be passed and returned like any other pointer type

- Higher-level languages both statically (C++, Rust, Java, Go,
OCaml, Haskell) and dynamically typed (Python, Ruby,
JavaScript, Racket) allow for a more flexible type called
closures, sometimes called lambdas

Used as a convenient interface for implementing iterators,
callbacks, concurrency,...

Functions as Values

5

Functions as Values

6

Functions as Values

7

need to support variable capture

Lambda Notation

8

Lambda Notation

9

Lambda notation is a syntax for defining function values directly rather than
using def

lambda x1, x2,...: e end

Convenient for defining small functions to pass to map/filter/fold, etc.

Implementing First-Class Functions

10

How can we implement first class functions:

1. What is the runtime representation of a function value?

2. What data do we need to correctly implement dynamic type checking for
functions

3. How can we ensure that we handle variable capture ?

Function Pointers

11

The compiled instructions implementing our functions are stored in executable
memory.

The simplest way to implement functions as first class values is for the runtime
representation of a function to simply be the address of its code in memory.

Function Pointers

12

Live code example

Function Pointers

13

The compiled instructions implementing our functions are stored in executable
memory.

The simplest way to implement functions as first class values is for the runtime
representation of a function to simply be the address of its code in memory.

This representation works in C, a statically typed language where functions are
only defined at the top level, i.e., cannot capture any variables.

Our language is dynamically typed and has local function definitions.

Dynamic Typing for Function Values

14

What new kinds of errors can arise with first class function values?

Dynamic Typing for Function Values

15

runtime error: true is not a function

Dynamic Typing for Function Values

16

runtime error: add (defined at ...) expected 2 arguments but was applied to 1

Dynamic Typing for Function Values

17

- Need to tag function values so that we can distinguish them from other data.

- Need to store the arity, i.e., number of parameters, with the function. Similar
to storing array length.

Dynamically typed function pointer then needs to take up more than 8 bytes to
store the function pointer and the arity, so we can store this as boxed data
stored on the heap.

Heap Object Metadata

18

We have already used 2 bits in our Snake values for tagging datatypes. If values
are boxed we can easily allocate many more by using a header word in our
heap representation.

E.g., for arrays:

Update to include an initial 8 byte header that identifies the type of the object on
the heap. For arrays: tag 0

Heap Object Metadata

19

We have already used 2 bits in our Snake values for tagging datatypes. If values
are boxed we can easily allocate many more by using a header word in our
heap representation.

For function pointers, we need to store

- A different header tag

- the number of arguments

- the function pointer itself

Function Pointers

20

The compiled instructions implementing our functions are stored in executable
memory.

The simplest way to implement functions as first class values is for the runtime
representation of a function to simply be the address of its code in memory.

This representation works in C, a statically typed language where functions are
only defined at the top level, i.e., cannot capture any variables.

Our language is dynamically typed and has local function definitions.

Variable Capture

21

the lambda function here captures the array variable a

Variable Capture

22

For second-class functions, we used lambda lifting to implement variable
capture.

Key property of second-class functions: at a call site, we can statically
determine the function we are being called with. So we can lookup what extra
arguments the function requires

This property fails for first-class functions

Variable Capture

23

the lambda function here
captures the outer variable x

what happens if we attempt our
lambda lifting translation from
before?

def adder(x):
 lambda y: x + y end
in
let add1 = adder(1),
 add2 = adder(2),
in add1(add2(0))

Variable Capture

24

fun adder(x):
 f = lambda_fun
 ret f
fun lambda_fun(x,y):
 r = x + y
 ret r
entry:
 add1 = adder(1)
 add2 = adder(2)
 tmp = add2(?, 0)
 tmp2 = add1(?, tmp)
 ret tmp2

def adder(x):
 lambda y: x + y end
in
let add1 = adder(1),
 add2 = adder(2),
in add1(add2(0))

at the call site we don't
know the values of the
captured variables

Variable Capture

25

def main(b):
 let f =
 if b:
 let x = 7 in
 lambda y:
 x + y end
 else: lambda y: y end
 in
 f(5) + 1

the value of f is
dynamically determined

what happens if we attempt our
lambda lifting translation from
before?

Variable Capture

26

fun lambda_1(x,y):
 r = x + y
 ret r
fun lambda_2(y):
 ret y
entry(b):
 jn(f):
 x = f(?, 5) or f(5)
 o = x + 1
 ret o
 thn:
 x = 7
 br jn(lambda_1)
 els:
 br jn(lambda_2

 cbr b thn() els()

def main(b):
 let f =
 if b:
 let x = 7 in
 lambda y:
 x + y end
 else: lambda y: y end
 in
 f(5) + 1

at the call site, we don't
know how many values are
captured

Functions Pointers can't Capture

27

Just like second class functions, first-class functions can capture variables in
scope at their definition site.

Unlike second class functions, the caller of a first-class function

1. Doesn't know how many variables the function captured

2. May not even have access to the variables the function captured

Our current strategy of supplying captured variables as extra arguments at the
call site is doomed to fail for first-class functions that can capture.

Alternative: need to supply the captured variables at the definition site.

Local Functions Attempt 1: Runtime Code Generation

28

One strategy to implement local functions is runtime code generation.

- A function value at runtime is still a (tagged) function pointer

- Constructing a function value means compiling the code at runtime, when
the values of captured variables are determined.

def adder(x):
 lambda y: x + y end
in
let add1 = adder(1),
 add2 = adder(2),
in add1(add2(0))

The first call to adder triggers a
compilation of the code
`lambda y: 1 + y`. Stores this in
the heap and returns the
pointer.

Local Functions Attempt 1: Runtime Code Generation

29

One strategy to implement local functions is runtime code generation.

- A function value at runtime is still a (tagged) function pointer

- Constructing a function value means compiling the code at runtime, when the values
of captured variables are determined.

Advantage:

 The generated code can be more efficient because the values are known at runtime.

Disadvantage:

 Big runtime overhead to run the compiler down to binary at runtime.

Not common in ahead-of-time compilation, but similar to how Just-in-time compilers work

Local Functions Attempt 2: Closures

30

The most common strategy to implement local functions is to use closures.

- A function value at runtime is a heap-allocated object grouping a function
pointer with an array containing the values of its captured variables

- Constructing a function value involves storing the captured variables on the
heap

- To call a function, unpack its code pointer and pass a pointer to its captured
variables.

Closure Conversion

31

Similar to our lambda lifting pass, we can translate programs that implicitly use
closures and capture variables to one that explicitly constructs/deconstructs
them. This pass is called closure conversion.

Can be done at the AST level or the SSA level, just like lambda lifting

An easy way to implement closure conversion is to compile to a version of the
language with arrays + function pointers.

Closure Conversion

32

def adder(x):
 lambda y: x + y end
in
let add1 = adder(1),
 add2 = adder(2),
in add1(add2(0))

def lambda_fun(captures,y):
 captures[0] + y
in
def adder(x): [lambda_fun, [x]] in

let add1 = adder(1),
 add2 = adder(2),
in add1[0](add1[1],
 add2[0](add2[1], 0))

By storing the captured variables as part of the function value, we can supply
them at the definition site, and use them at the call site

An easy way to implement closure conversion is to compile to a version of the
language with arrays + function pointers.

Closure Conversion

33

def lambda_1(captures, y):
 captures[0] + y
in
def lambda_2(captures, y): y in
def main(b):
 let f =
 if b: let x = 7 in [lambda_1, [x]]
 else: [lambda_2, []]
 in
 f[0](f[1], 5) + 1

def main(b):
 let f =
 if b:
 let x = 7 in
 lambda y:
 x + y end
 else: lambda y: y end
 in
 f(5) + 1

Important to represent all lambda functions as taking an array of arguments so that they
have a uniform interface: the caller doesn't know how large the captured environment is

Closure Conversion

34

Translating closures to arrays + function pointers gives correct semantics, but
doesn't support dynamic typing features. E.g., all closures values would satisfy
isArray.

Instead make a new type of heap object for closures

Functions as Closures

35

A closure is a datatype for first-class functions consisting of both

1. The function pointer

2. An array of captured arguments

We store the captured arguments at the function's definition site, rather than
passing them at the call site

Recursive Closures

36

How can we extend this closure conversion strategy to handle recursive
functions?

Surprisingly, we can also "translate away" recursive definitions, in two ways:

1. Clever functional programming: Y combinator

2. Clever imperative programming: "Landin's knot"

Recursion as Syntax Sugar

37

How do we "translate away" recursion?

Step 1: translate a recursive function into one that takes "itself" as an argument.

def fact(n):

 if n == 0: 1

 else: n * fact(n - 1)

let fact = lambda(fact): lambda(n):

 if n == 0: 1

 else: n * fact(n - 1)

 end

end

Recursion as Syntax Sugar

38

How do we "translate away" recursion?

Step 1: translate a recursive function into one that takes "itself" as an argument.

Step 2: write a function that "ties the knot" applying its input to itself

def fact(n):

 if n == 0: 1

 else: n * fact(n - 1)

let fact = Y(lambda(fact): lambda(n):

 if n == 0: 1

 else: n * fact(n - 1)

 end

end)

Y Combinator

39

The Y combinator is one method for "tying the knot". Discovered in the 1930s
when lambda calculus was invented as a foundation for logic.

let Y = lambda f:
 let s = lambda x: lambda v:
 f(x(x))(v) end end
 in s(s)
 end

Y Combinator

40

Why does this work?

Y(f)
=~ let s = (lambda x: lambda v: f(x(x))(v) end end)
 in s(s)

=~ let s = (lambda x: lambda v: f(x(x))(v) end end)
 lambda v: f(s(s))(v)

=~ lambda v: f(Y(f))(v)

Y Combinator

41

Demo: JS Y Combinator

Y Combinator

42

The Y combinator is one method for "tying the knot". Discovered in the 1930s
when lambda calculus was invented as a foundation for logic.

let Y = lambda f:
 let s = lambda x: lambda v:
 f(x(x))(v) end end
 in s(s)
 end

Elegant, but allocates a lot of closures.

Challenge: extend this to mutual recursion and functions with any number of
arguments

Landin's Knot

43

An easier way to "tie the knot" is to "backpatch" a pointer to the function.

let factBox = [false] in
let fact = lambda n:
 if n == 0: 1
 else: n * factBox[0](n - 1)
 end
end)

Use array of length 1 as a way to get a mutable variable

Use false as a "null pointer"

Landin's Knot

44

Demo: JS Landin's Knot

Landin's Knot

45

An easier way to "tie the knot" is to "backpatch" a pointer to the function.

let factBox = [false] in
let fact = lambda n:
 if n == 0: 1
 else: n * factBox[0](n - 1)
 end
end)

In memory: we are constructing a circular data structure. Initialize the recursive
references to null pointers and then update them once the data is defined.

Compiling Functions

46

In our source programming languages, functions are a simple, elegant abstraction.

But they do not have a single elegant implementation.

Modern compilers work hard to combine multiple implementation strategies behind
this single source interface:

1. Local tail calls can be compiled as efficiently as loops

2. Most calls are to statically determined functions, don't require allocating a closure

3. Construct a closure only when necessary: when the function is actually used in a
first class manner.

Essential in performance-sensitive languages like Rust that use closures for core
functionality (iterators)!

