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Winter Semester 2025

EECS 483: Compiler Construction
Lecture 13:  
Closures and First-class Functions Continued
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Announcements
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Assignment 3 (Procedures) due on Friday


Spring Break next week


Midterm on Tuesday, March 18, 6-8pm.

Second week after Spring Break

Topics: anything covered in assignments 1-3 and lecture material before spring break

Rooms DOW1010, DOW1017, DOW1018


Midterm review in lecture March 17, bring questions about course material.


After Spring Break:

optimization

frontend



Functions as Values
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So far in our Snake language, functions are second class, 
meaning that unlike integers/booleans/arrays:


- ordinary program variables cannot be functions


- functions can't be passed as arguments to other functions


- functions can't be returned as values from other functions


This restriction simplifies the job of the compiler, but is 
uncommon in modern programming languages.



Functions as Values
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Modern programming languages allow us to use functions as 
first-class data 


- Low level languages like C/C++ have function pointers, 
which can be passed and returned like any other pointer type


- Higher-level languages both statically (C++, Rust, Java, Go, 
OCaml, Haskell) and dynamically typed (Python, Ruby, 
JavaScript, Racket) allow for a more flexible type called 
closures, sometimes called lambdas 

Used as a convenient interface for implementing iterators, 
callbacks, concurrency,...



Functions as Values
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Functions as Values
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Functions as Values
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need to support variable capture



Lambda Notation
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Lambda Notation
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Lambda notation is a syntax for defining function values directly rather than 
using def 

lambda x1, x2,...: e end 

Convenient for defining small functions to pass to map/filter/fold, etc.



Implementing First-Class Functions
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How can we implement first class functions:


1. What is the runtime representation of a function value?


2. What data do we need to correctly implement dynamic type checking for 
functions


3. How can we ensure that we handle variable capture ?



Function Pointers
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The compiled instructions implementing our functions are stored in executable 
memory.


The simplest way to implement functions as first class values is for the runtime 
representation of a function to simply be the address of its code in memory.


 



Function Pointers
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Live code example



Function Pointers
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The compiled instructions implementing our functions are stored in executable 
memory.


The simplest way to implement functions as first class values is for the runtime 
representation of a function to simply be the address of its code in memory.


This representation works in C, a statically typed language where functions are 
only defined at the top level, i.e., cannot capture any variables.


Our language is dynamically typed and has local function definitions.



Dynamic Typing for Function Values
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What new kinds of errors can arise with first class function values?



Dynamic Typing for Function Values
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runtime error: true is not a function



Dynamic Typing for Function Values
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runtime error: add (defined at ...) expected 2 arguments but was applied to 1



Dynamic Typing for Function Values
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- Need to tag function values so that we can distinguish them from other data.


- Need to store the arity, i.e., number of parameters, with the function. Similar 
to storing array length.


Dynamically typed function pointer then needs to take up more than 8 bytes to 
store the function pointer and the arity, so we can store this as boxed data 
stored on the heap.




Heap Object Metadata
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We have already used 2 bits in our Snake values for tagging datatypes. If values 
are boxed we can easily allocate many more by using a header word in our 
heap representation.


E.g., for arrays:

Update to include an initial 8 byte header that identifies the type of the object on 
the heap. For arrays: tag 0




Heap Object Metadata
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We have already used 2 bits in our Snake values for tagging datatypes. If values 
are boxed we can easily allocate many more by using a header word in our 
heap representation.


For function pointers, we need to store


- A different header tag


- the number of arguments


- the function pointer itself



Function Pointers
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The compiled instructions implementing our functions are stored in executable 
memory.


The simplest way to implement functions as first class values is for the runtime 
representation of a function to simply be the address of its code in memory.


This representation works in C, a statically typed language where functions are 
only defined at the top level, i.e., cannot capture any variables.


Our language is dynamically typed and has local function definitions.



Variable Capture
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the lambda function here captures the array variable a



Variable Capture
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For second-class functions, we used lambda lifting to implement variable 
capture.


Key property of second-class functions: at a call site, we can statically 
determine the function we are being called with. So we can lookup what extra 
arguments the function requires


This property fails for first-class functions



Variable Capture
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the lambda function here 
captures the outer variable x

what happens if we attempt our 
lambda lifting translation from 
before?

def adder(x): 
  lambda y: x + y end 
in 
let add1 = adder(1), 
    add2 = adder(2), 
in add1(add2(0))  



Variable Capture
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fun adder(x): 
  f = lambda_fun 
  ret f 
fun lambda_fun(x,y): 
  r = x + y 
  ret r 
entry: 
  add1 = adder(1) 
  add2 = adder(2) 
  tmp = add2(?, 0)  
  tmp2 = add1(?, tmp) 
  ret tmp2 

def adder(x): 
  lambda y: x + y end 
in 
let add1 = adder(1), 
    add2 = adder(2), 
in add1(add2(0))  

at the call site we don't 
know the values of the 
captured variables



Variable Capture
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def main(b): 
  let f = 
    if b:  
      let x = 7 in 
      lambda y:  
        x + y end 
    else: lambda y: y end 
  in 
  f(5) + 1

the value of f is 
dynamically determined 

what happens if we attempt our 
lambda lifting translation from 
before?



Variable Capture
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fun lambda_1(x,y): 
  r = x + y 
  ret r 
fun lambda_2(y): 
  ret y 
entry(b): 
  jn(f): 
    x = f(?, 5) or f(5) 
    o = x + 1 
    ret o 
  thn: 
    x = 7 
    br jn(lambda_1) 
  els: 
    br jn(lambda_2 

  cbr b thn() els()

def main(b): 
  let f = 
    if b:  
      let x = 7 in 
      lambda y:  
        x + y end 
    else: lambda y: y end 
  in 
  f(5) + 1

at the call site, we don't 
know how many values are 
captured



Functions Pointers can't Capture
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Just like second class functions, first-class functions can capture variables in 
scope at their definition site.


Unlike second class functions, the caller of a first-class function


1. Doesn't know how many variables the function captured


2. May not even have access to the variables the function captured


Our current strategy of supplying captured variables as extra arguments at the 
call site is doomed to fail for first-class functions that can capture.


Alternative: need to supply the captured variables at the definition site.



Local Functions Attempt 1: Runtime Code Generation
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One strategy to implement local functions is runtime code generation.


- A function value at runtime is still a (tagged) function pointer


- Constructing a function value means compiling the code at runtime, when 
the values of captured variables are determined.


def adder(x): 
  lambda y: x + y end 
in 
let add1 = adder(1), 
    add2 = adder(2), 
in add1(add2(0))  

The first call to adder triggers a 
compilation of the code 
`lambda y: 1 + y`. Stores this in 
the heap and returns the 
pointer.



Local Functions Attempt 1: Runtime Code Generation
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One strategy to implement local functions is runtime code generation.


- A function value at runtime is still a (tagged) function pointer


- Constructing a function value means compiling the code at runtime, when the values 
of captured variables are determined.


Advantage:


  The generated code can be more efficient because the values are known at runtime.


Disadvantage:


  Big runtime overhead to run the compiler down to binary at runtime.


Not common in ahead-of-time compilation, but similar to how Just-in-time compilers work



Local Functions Attempt 2: Closures
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The most common strategy to implement local functions is to use closures.


- A function value at runtime is a heap-allocated object grouping a function 
pointer with an array containing the values of its captured variables


- Constructing a function value involves storing the captured variables on the 
heap


- To call a function, unpack its code pointer and pass a pointer to its captured 
variables.




Closure Conversion
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Similar to our lambda lifting pass, we can translate programs that implicitly use 
closures and capture variables to one that explicitly constructs/deconstructs 
them. This pass is called closure conversion. 

Can be done at the AST level or the SSA level, just like lambda lifting



An easy way to implement closure conversion is to compile to a version of the 
language with arrays + function pointers.

Closure Conversion
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def adder(x): 
  lambda y: x + y end 
in 
let add1 = adder(1), 
    add2 = adder(2), 
in add1(add2(0))  

def lambda_fun(captures,y):  
  captures[0] + y  
in 
def adder(x): [lambda_fun, [x]] in 

let add1 = adder(1), 
    add2 = adder(2), 
in add1[0](add1[1], 
     add2[0](add2[1], 0)) 

By storing the captured variables as part of the function value, we can supply 
them at the definition site, and use them at the call site



An easy way to implement closure conversion is to compile to a version of the 
language with arrays + function pointers.

Closure Conversion
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def lambda_1(captures, y): 
  captures[0] + y 
in 
def lambda_2(captures, y): y in 
def main(b):   
  let f = 
    if b: let x = 7 in [lambda_1, [x]] 
    else: [lambda_2, []] 
  in 
  f[0](f[1], 5) + 1

def main(b): 
  let f = 
    if b:  
      let x = 7 in 
      lambda y:  
        x + y end 
    else: lambda y: y end 
  in 
  f(5) + 1

Important to represent all lambda functions as taking an array of arguments so that they 
have a uniform interface: the caller doesn't know how large the captured environment is



Closure Conversion
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Translating closures to arrays + function pointers gives correct semantics, but 
doesn't support dynamic typing features. E.g., all closures values would satisfy 
isArray.


Instead make a new type of heap object for closures



Functions as Closures
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A closure is a datatype for first-class functions consisting of both


1. The function pointer


2. An array of captured arguments


We store the captured arguments at the function's definition site, rather than 
passing them at the call site



Recursive Closures
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How can we extend this closure conversion strategy to handle recursive 
functions?


Surprisingly, we can also "translate away" recursive definitions, in two ways:


1. Clever functional programming: Y combinator 

2. Clever imperative programming: "Landin's knot"



Recursion as Syntax Sugar
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How do we "translate away" recursion?


Step 1: translate a recursive function into one that takes "itself" as an argument.

def fact(n):

  if n == 0: 1

  else: n * fact(n - 1)

let fact = lambda(fact): lambda(n):

  if n == 0: 1

  else: n * fact(n - 1)

  end 

end



Recursion as Syntax Sugar
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How do we "translate away" recursion?


Step 1: translate a recursive function into one that takes "itself" as an argument.


Step 2: write a function that "ties the knot" applying its input to itself

def fact(n):

  if n == 0: 1

  else: n * fact(n - 1)

let fact = Y(lambda(fact): lambda(n):

  if n == 0: 1

  else: n * fact(n - 1)

  end 

end)



Y Combinator
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The Y combinator is one method for "tying the knot". Discovered in the 1930s 
when lambda calculus was invented as a foundation for logic.

let Y = lambda f: 
  let s = lambda x: lambda v: 
            f(x(x))(v) end end 
  in s(s) 
  end



Y Combinator
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Why does this work?

Y(f) 
=~ let s = (lambda x: lambda v: f(x(x))(v) end end) 
   in s(s) 

=~ let s = (lambda x: lambda v: f(x(x))(v) end end) 
   lambda v: f(s(s))(v) 

=~ lambda v: f(Y(f))(v) 



Y Combinator
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Demo: JS Y Combinator



Y Combinator
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The Y combinator is one method for "tying the knot". Discovered in the 1930s 
when lambda calculus was invented as a foundation for logic.

let Y = lambda f: 
  let s = lambda x: lambda v: 
            f(x(x))(v) end end 
  in s(s) 
  end

Elegant, but allocates a lot of closures.


Challenge: extend this to mutual recursion and functions with any number of 
arguments



Landin's Knot
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An easier way to "tie the knot" is to "backpatch" a pointer to the function.

let factBox = [false] in 
let fact = lambda n: 
  if n == 0: 1 
  else: n * factBox[0](n - 1) 
  end  
end)

Use array of length 1 as a way to get a mutable variable


Use false as a "null pointer"



Landin's Knot
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Demo: JS Landin's Knot



Landin's Knot
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An easier way to "tie the knot" is to "backpatch" a pointer to the function.

let factBox = [false] in 
let fact = lambda n: 
  if n == 0: 1 
  else: n * factBox[0](n - 1) 
  end  
end)

In memory: we are constructing a circular data structure. Initialize the recursive 
references to null pointers and then update them once the data is defined.



Compiling Functions
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In our source programming languages, functions are a simple, elegant abstraction. 


But they do not have a single elegant implementation.


Modern compilers work hard to combine multiple implementation strategies behind 
this single source interface:


1. Local tail calls can be compiled as efficiently as loops


2. Most calls are to statically determined functions, don't require allocating a closure


3. Construct a closure only when necessary: when the function is actually used in a 
first class manner. 


Essential in performance-sensitive languages like Rust that use closures for core 
functionality (iterators)!


