
February 24
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 12:
Arrays Continued, First-class Functions

1

Reminder

2

Assignment 3 (Procedures) due on Friday

State of the Snake Language

Adder: Straightline Code (arithmetic circuits)

Boa: local control flow (finite automata)

Cobra: procedures, extern (pushdown automata)

3

Snake v4: Diamondback

1. Add new datatypes, use dynamic typing to distinguish them at runtime

2. Include heap-allocated variable-sized arrays, allowing for unrestricted memory
usage

Computational power: Turing complete

Concrete Syntax

4

Abstract Syntax

5

The Heap

6

Let's take a particularly simple view of the heap for now: the heap is a large
region of memory, disjoint from the stack. Some amount of this space is used,
and we have a heap pointer that points to the next available region.

If memory is never deallocated (but also in copying gc), the structure is similar
to the stack: we have a region of used space and a region of free space and the
heap pointer, like the stack pointer, points to the beginning of the free space.

While the stack grows downward in memory, the heap grows upward.

Memory Management

7

Need our assembly programs to have access to the heap pointer at all times.

We will implement management of the heap in our runtime system, i.e., in Rust.
Our assembly code programs will interface with the runtime system by calling
functions the runtime system provides.

Implementing Arrays

8

When we implement arrays, we have two different representations to define:

1. How they are stored as "objects" in the heap

2. How they are represented as Snake values

Arrays as Objects

9

What data does an array need to store?

1. Need to layout the values sequentially so we can implement get/set

2. Need to store the length of the array to implement length as well as bounds
checking for get/set.

Arrays as Values

10

The Snake value we store on the stack for an array is a tagged pointer to the
array stored on the heap.

We overwrite the 2 least significant bits of the pointer with the tag 0b11.

This is safe, as long as those 2 least significant bits of the pointer contain no
information, i.e., if they are always 0.

2 least significant bits of a pointer are 0 means the address is a multiple of 4,
meaning the address is at a 4-byte alignment.

All arrays on our heap take up size that is a multiple of 8 bytes, so as long as the
base of the heap is 4-byte aligned, we maintain this invariant.

Heap/Runtime Demo

11

Live code: runtime system

Heap/Runtime Demo

12

Summary:

Pre-allocate a large chunk of memory for our Snake program to use as its heap.

Allocation is managed by the runtime system, i.e., the stub.rs code.

http://stub.rs

Implementing Array Operations

13

Like with dynamically typed booleans, implementing array operations involves a
combination of

1. Checking tags to ensure that the inputs are valid

2. Removing tags to get access to the underlying pointers

3. "Actual" loads and stores to memory

4. Adding tags to outputs

Implementing Array Operations

14

Like with dynamically typed booleans, implementing array operations involves a
combination of

1. Checking tags to ensure that the inputs are valid

2. Removing tags to get access to the underlying pointers

3. "Actual" loads and stores to memory

4. Adding tags to outputs

As with booleans, we will add assertions as primitives to SSA, but implement
the rest using new SSA operations for load/store.

SSA Extensions

15

1. assertArray(x)

fail if x is not tagged as an array

2. assertInBounds(n, m)

 fail if m is an out of bounds index into a length n array, i.e., assert m < n

2. load(p, off)

load 8 bytes of memory at [p + off * 8]

3. store(p, off, v)

 store the 8-byte value v at [p + off * 8]

4. allocateArray(n)

allocate an array of length n from the runtime system

Implementing New Operations

16

1. assertArray(x): similar to assertInt, assertBool

2. assertInBounds(n, m)
 cmp n, m
 jle oob_error

3. load(p, off)
 mov dest, [p + off * 8]

4. store(p, off, v)
 mov [p + off * 8], v

5. allocateArray(n): call into the RTSs

Translation to SSA

17

1. newArray

2. array literals

3. array access

4. array update

5. isArray

Translation to SSA

18

Array allocation

Diamondback SSA

newArray(e) ...
n = ... compile e
assertInt(n)
l = n >> 1
arr = allocateArray(n)
res = arr | 0b11
bContinuation:

result stored in res
body of cont: b

Translation to SSA

19

Array literals

Diamondback SSA

[e0 , ... , e(n-1)] ...
x0 = ... compile e0
...
arr = allocateArray(n)
store(arr, 1, x0)
...
store(arr, n, x(n-1))
res = arr | 0b11
bContinuation:

result stored in res
body of cont: b

Translation to SSA

20

Array access

Diamondback SSA

e1[e2]
...
x1 = ... compile e1
...
x2 = ... compile e2
assertArray(x1)
assertInt(x2)
arr = x1 ^ 0b11
len = load(arr, 0)
ix = x2 >> 1
assertInBounds(len, ix)
ix2 = ix + 1 ; skip over the length
res = load(arr, ix2)
b

Continuation:
result stored in res
body of cont: b

Translation to SSA

21

Array update

Diamondback SSA

e1[e2] := e3

...
x1 = ... compile e1
...
x2 = ... compile e2
...
x3 = ... compile e3
assertArray(x1)
assertInt(x2)
arr = x1 ^ 0b11
len = load(arr, 0)
ix = x2 >> 1
assertInBounds(len, ix)
ix2 = ix + 1 ; skip over the length
store(arr, ix2, x3)
res = x3
b

Continuation:
result stored in res
body of cont: b

Translation to SSA

22

Diamondback SSA

isArray(e)
...
x = ... compile e
tag = x & 0b11
isArr = tag == 0b11
shifted = isArr << 2
res = shifted | 0b01
b

Continuation:
result stored in res
body of cont: b

Array tag check

Array Summary

23

1. Extend runtime with a memory allocator, error functions

2. Extend translation to SSA to insert assertions, manipulate the runtime
representation

3. Extend SSA to x86 to support loads, stores, assertion/allocator calls.

Functions as Values

24

So far in our Snake language, functions are second class,
meaning that unlike integers/booleans/arrays:

- ordinary program variables cannot be functions

- functions can't be passed as arguments to other functions

- functions can't be returned as values from other functions

This restriction simplifies the job of the compiler, but is
uncommon in modern programming languages.

Functions as Values

25

Modern programming languages allow us to use functions as
first-class data

- Low level languages like C/C++ have function pointers,
which can be passed and returned like any other pointer type

- Higher-level languages both statically (C++, Rust, Java, Go,
OCaml, Haskell) and dynamically typed (Python, Ruby,
JavaScript, Racket) allow for a more flexible type called
closures, sometimes called lambdas

Used as a convenient interface for implementing iterators,
callbacks, concurrency,...

Functions as Values

26

Functions as Values

27

Functions as Values

28

need to support variable capture

Lambda Notation

29

Lambda Notation

30

Lambda Notation

31

Lambda notation is a syntax for defining function values directly rather than
using def

lambda x1, x2,...: e end

Convenient for defining small functions to pass to map/filter/fold, etc.

Lambda Notation

32

Does lambda notation add any expressive power over local function definitions?

No.

lambda x1, x2,...: e end
def foo(x1, x2,...): e in

foo

Lambda Notation

33

What about the other way around? Are there functions we can define using local
function definitions that we can't define using just lambda notation?

We can try a reverse translation:

def f(x1, x2,...): e1 in

e2

let f = lambda x1, x2,...: e1 in

e2

what goes wrong?

Lambda Notation

What about the other way around? Are there functions we can define using local
function definitions that we can't define using just lambda notation?

We can try a reverse translation:

recursive call to fac is out of scope, because let bindings are not
recursive

it is possible to desugar functions to just lambda (Y combinator),
but harder to compile resulting code efficiently

