
February 19
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 11:
Dynamic Typing Continued, Heap Allocation

1

Announcements

2

- Assignment 3 released

- Monday's live code updated to include full interpreter

Representing Dynamically Typed Values

3

To implement our compiler, we need to specify

1. How each of our Snake values are represented at runtime

2. How to implement the primitive operations on these representations

Integers

4

Implement a snake integer as a 63-bit signed integer followed by a 0 bit
to indicate that the value is an integer

I.e., represent a 63-bit integer n as the 64-bit integer 2 * n

Booleans

5

The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b01 to distinuish from integers and other
datatypes

Use the remaining 62 bits to encode true and false as before as 1 and 0

2^62 - 2 bit patterns are therefore "junk" in this format

Boxed Data

6

The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b11 to distinguish from booleans.

Use remaining 62-bits to encode a pointer to the data on the heap

Representing Dynamically Typed Values

7

least
significant

bit

63-bit
integer

2nd least
significant

bit

boolean

boxed value
on the heap

0

1

0

1

Implementing Dynamically Typed Operations

8

We need to revisit our implementation of all primitives in assembly code
to see how they should work with our new datatype representations.

1. Arithmetic operations (add, sub, mul)

2. Inequality operations (<=, <, >=, >)

3. Equality

4. Logical operations (&&, ||, !)

As well as supporting our new operations isInt and isBool

Implementing Dynamically Typed Operations

9

In dynamic typing, implementing a primitive operation has two parts:

1. How to check that the inputs have the correct type tag

2. How to actually perform the operation on the encoded data

Implementing Dynamically Typed Operations

10

Live code

Compiling Dynamic Typing

11

We know what the source semantics is and what kind of assembly
code we want to generate.

In implementing the compiler, we now we have a design choice: in what
phase of the compiler do we actually "implement" dynamic typing?

1. Implement everything in x86 code generation

2. Implement everything in lowering to SSA

3. Implement in multiple passes

Compiling Dynamic Typing

12

Approach 1: implement all dynamic typing semantics in code
generation.

In this case, SSA values would be dynamically typed, like
Diamondback

Compiling Dynamic Typing

13

Approach 1: implement all dynamic typing semantics in code generation.

x + y r = x + y
ret r

mov rax, [rsp - 8]
test rax, 1
jnz err_arith_exp_int
mov r10, [rsp - 8]
test r10, 1
jnz err_arith_exp_int
add rax, r10
ret

Diamondback SSA x86

Compiling Dynamic Typing

14

Approach 1: implement all dynamic typing semantics in code
generation.

In this case, SSA values would be dynamically typed, like
Diamondback

Downside: goes against the philosophy that SSA should be thin
wrapper around the assembly code.

Makes the semantics of SSA more complex and so the code
generation more complex.

More complex code generation: missed opportunities for SSA-based
optimization

Compiling Dynamic Typing

15

Approach 2: implement dynamic typing in the translation to SSA

In this approach, SSA values are as before always 64-bit integers, and
SSA operations work on these 64-bit integers (as they do now)

Compiling Dynamic Typing

16

Approach 2: implement dynamic typing in the translation to SSA

x * y check_y():
 y_bit = y & 1
 c = y_bit == 0
 cbr mult_xy() err()
mult_xy():
 tmp = x * y
 z = tmp >> 1
 ret z
x_bit = x & 1
b = x_bit == 0
cbr check_y() err()
...

Diamondback SSA

Compiling Dynamic Typing

17

Approach 2: implement dynamic typing in the translation to SSA

Benefit: code generation is very simple, at cost of SSA lowering more
complex

Downside: difficult to optimize unnecessary tag checks away

Compiling Dynamic Typing

18

Approach 3: implement dynamic typing in multiple passes

In lowering to SSA, make some aspects of dynamic typing explicit but
leave the tag checking as primitive operations.

Implement the tag checking in the x86 code generation.

Compiling Dynamic Typing

19

Approach 3: implement some dynamic typing in SSA lowering

x * y assertInt(x)
assertInt(y)
half = x >> 1
r = half * y
ret r

Diamondback SSA

Insert type tag assertions in SSA, implement bit-twiddling manually

Compiling Dynamic Typing

20

Approach 3: implement some dynamic typing in SSA lowering

assertInt(x)
SSA

mov rax, [rsp - offset(x)]
test rax, 1
jnz assert_int_fail
...
assert_int_fail:
 sub rsp, 8
 call snake_assert_int_error

x86

Compiling Dynamic Typing

21

Optimization opportunity

def fact(x):
 if x == 0:
 1
 else:
 x * fact(x - 1)
in
fact(7)

Diamondback SSA

...
tmp1 = x - 1
tmp2 = call fact(tmp1)
assertInt(x)
assertInt(tmp2)
r = x * tmp2
ret r

will these assertInt ever fail?

Compiling Dynamic Typing

22

Optimization opportunity

def fact(x):
 if x == 0:
 1
 else:
 x * fact(x - 1)
in
fact(7)

Diamondback SSA

...
tmp1 = x - 1
tmp2 = call fact(tmp1)
assertInt(x)
assertInt(tmp2)
r = x * tmp2
ret r

with a simple static analysis determine that
x, tmp2 always have the correct tag for an
Int. Remove unnecessary assertions

Compiling Dynamic Typing

23

Compare to approach 2:

x * y check_y():
 y_bit = y & 1
 c = y_bit == 0
 cbr mult_xy() err()
mult_xy():
 tmp = x * y
 z = tmp >> 1
 ret z
x_bit = x & 1
b = x_bit == 0
cbr check_y() err()
...

Diamondback SSA

how would we remove the
checking from the code on the
right?

Summary: Adding Dynamic typing

24

How does adding dynamic typing affect each pass of our compiler?

Changes to Frontend

25

New error: only 63-bit integers are supported, so need to reject 64-bit
values in the parser/frontend

Changes to Middle End

26

Diamondback values: tagged data, either a 63-bit int, or true or false

SSA values: 64-bit integers

Add primitive assertions assertInt and assertBool to SSA

Use bitwise masking and left/right shift in SSA to encode the correct
semantics of Diamondback values and operations

Changes to Back End

27

Implement assertInt and assertBool operations in x86, calling out to
functions implemented in Rust to display appropriate errors

Changes to Runtime (stub.rs)

28

Parse input arguments into snake values.

Update printing to account for new representation

Implement functions that display runtime errors and exit the process

http://stub.rs

State of the Snake Language

Adder: Straightline Code (arithmetic circuits)

Boa: local control flow (finite automata)

Cobra: procedures, extern (pushdown automata)

29

Snake v4: Diamondback

1. Add new datatypes, use dynamic typing to distinguish them at runtime

2. Include heap-allocated variable-sized arrays, allowing for unrestricted memory
usage

Computational power: Turing complete

Extending the Snake Language
Diamondback: Arrays

30

def main(x):
 [x , x + 1, x + 2]

allocate an array with a statically known size

Extending the Snake Language
Diamondback: Arrays

31

def main(x):
 newArray(x)

allocate an array with dynamically determined size (elements initialized to 0)

Extending the Snake Language
Diamondback: Arrays

32

def main(x):
 let a = [x , -1 * x] in

a[0]

array indexing

Extending the Snake Language
Diamondback: Arrays

33

def main(x):
 let a = [x , -1 * x] in

let _ = a[1] := a[1] + 1 in
a[1]

arrays can be mutably updated

Extending the Snake Language
Diamondback: Arrays

34

def main(x):
 let a = [x , -1 * x] in
 length(a)

should be able to access the length of any array value

Extending the Snake Language
Diamondback: Arrays

35

def main(x):
 let a = [x , -1 * x] in

a[3]

Out of bounds access/update should be runtime errors

Extending the Snake Language
Diamondback: Arrays

36

def main(x):
 let a = [x , -1 * x] in

isArray(a)

support tag checking as with ints, bools

Extending the Snake Language
Diamondback: Arrays

37

def main(x):
 let list = [0, 1, false] in
 let _ = list[2] := list in

...

mutable updates allow for cyclic data

Concrete Syntax

38

Abstract Syntax

39

Extending the Snake Language
Diamondback: Arrays

40

Semantics:

1. Each time we allocate an array should be a new memory location, so
that updates don't overwrite previous allocations

2. What value does e1[e2] := e3 produce?

 options: a constant, the value of e1 or e3, the old value of e1[e2]

3. Is equality of arrays by value or by reference?

 [0, 1, 2] == [0 , 1, 2]

Allocating Arrays

41

Where should the contents of our arrays be stored?

- Stack?

- Heap?

Stack Allocation

42

Can we allocate our arrays on the stack?

def main(x):
 let a = [x , -1 * x] in

a[1] := 0

Stack Allocation

43

Can we allocate our arrays on the stack?

def main(x):
 let a = [0, 1] in
 def f(n):
 a[n] + a[n + 1]
 in
 x + f(0)

Stack Allocation

44

Can we allocate our arrays on the stack?

def main(x):
 def f():
 [0, 1, 2, 3, 4]
 in
 def g(arr, i, j, k):
 arr[i] * arr[j] * arr[k]
 in
 let arr = f() in
 g(arr, 0, 2, 4)

If f allocates in its stack frame
and returns a pointer,

The memory will be
overwritten by any future calls

Doing this safely would require
copying any returned data
into the caller's stack frame.
Not feasible for dynamically
sized values.

Stack Allocation

45

Dynamically sized data can only feasibly be stack allocated if it is local to the
function, i.e., only used in call stacks that contain the current function's stack
frame.

If the dynamically sized data is returned from the function that allocates it, we
instead allocate it in a separate memory region, the heap, and return a pointer
to it.

Heap Allocation

46

The heap contains data whose lifetime is not tied to a local stack frame.

This makes the usage of the data more flexible, but complicates the question of
when the data is deallocated.

For today, let's assume we do not deallocate memory.

A strategy used in some specialized applications (missiles)

Today's simple heap model: the heap is a large region of memory, disjoint from
the stack, some of it is used, and we have a pointer to the next available portion
of memory.

Heap Allocation

47

The heap contains data whose lifetime is not tied to a local stack frame.

This makes the usage of the data more flexible, but complicates the question of
when the data is deallocated.

For today, let's assume we do not deallocate memory.

A strategy used in some specialized applications (missiles)

The Heap

48

Let's take a particularly simple view of the heap for now: the heap is a large
region of memory, disjoint from the stack. Some amount of this space is used,
and we have a heap pointer that points to the next available region.

If memory is never deallocated (but also in copying gc), the structure is similar
to the stack: we have a region of used space and a region of free space and the
heap pointer, like the stack pointer, points to the beginning of the free space.

While the stack grows downward in memory, the heap grows upward.

Memory Management

49

Need our assembly programs to have access to the heap pointer at all times.

We will implement management of the heap in our runtime system, i.e., in Rust.
Our assembly code programs will interface with the runtime system by calling
functions the runtime system provides.

Implementing Arrays

50

When we implement arrays, we have two different representations to define:

1. How they are stored as "objects" in the heap

2. How they are represented as Snake values

Arrays as Objects

51

What data does an array need to store?

1. Need to layout the values sequentially so we can implement get/set

2. Need to store the length of the array to implement length as well as bounds
checking for get/set.

Arrays as Values

52

The Snake value we store on the stack for an array is a tagged pointer to the
array stored on the heap.

We overwrite the 2 least significant bits of the pointer with the tag 0b11.

This is safe, as long as those 2 least significant bits of the pointer contain no
information, i.e., if they are always 0.

2 least significant bits of a pointer are 0 means the address is a multiple of 4,
meaning the address is at a 4-byte alignment.

All arrays on our heap take up size that is a multiple of 8 bytes, so as long as the
base of the heap is 4-byte aligned, we maintain this invariant.

Heap/Runtime Demo

53

Live code: runtime system

Heap/Runtime Demo

54

Summary:

Pre-allocate a large chunk of memory for our Snake program to use as its heap.

Allocation is managed by the runtime system, i.e., the stub.rs code.

http://stub.rs

