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Announcements

2

- Assignment 3 released

- Monday's live code updated to include full interpreter



Representing Dynamically Typed Values
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To implement our compiler, we need to specify

1. How each of our Snake values are represented at runtime

2. How to implement the primitive operations on these representations



Integers
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Implement a snake integer as a 63-bit signed integer followed by a 0 bit 
to indicate that the value is an integer


I.e., represent a 63-bit integer n as the 64-bit integer 2 * n




Booleans
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The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b01 to distinuish from integers and other 
datatypes

Use the remaining 62 bits to encode true and false as before as 1 and 0

2^62 - 2 bit patterns are therefore "junk" in this format




Boxed Data
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The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b11 to distinguish from booleans.


Use remaining 62-bits to encode a pointer to the data on the heap




Representing Dynamically Typed Values
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Implementing Dynamically Typed Operations
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We need to revisit our implementation of all primitives in assembly code 
to see how they should work with our new datatype representations.

1. Arithmetic operations (add, sub, mul)

2. Inequality operations (<=, <, >=, >)

3. Equality

4. Logical operations (&&, ||, !)

As well as supporting our new operations isInt and isBool 



Implementing Dynamically Typed Operations
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In dynamic typing, implementing a primitive operation has two parts:

1. How to check that the inputs have the correct type tag

2. How to actually perform the operation on the encoded data



Implementing Dynamically Typed Operations
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Live code



Compiling Dynamic Typing
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We know what the source semantics is and what kind of assembly 
code we want to generate.

In implementing the compiler, we now we have a design choice: in what 
phase of the compiler do we actually "implement" dynamic typing?

1. Implement everything in x86 code generation

2. Implement everything in lowering to SSA

3. Implement in multiple passes 



Compiling Dynamic Typing
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Approach 1: implement all dynamic typing semantics in code 
generation.

In this case, SSA values would be dynamically typed, like 
Diamondback




Compiling Dynamic Typing

13

Approach 1: implement all dynamic typing semantics in code generation.


x + y r = x + y 
ret r 

mov rax, [rsp - 8] 
test rax, 1 
jnz err_arith_exp_int 
mov r10, [rsp - 8] 
test r10, 1 
jnz err_arith_exp_int 
add rax, r10 
ret

Diamondback SSA x86



Compiling Dynamic Typing
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Approach 1: implement all dynamic typing semantics in code 
generation.

In this case, SSA values would be dynamically typed, like 
Diamondback


Downside: goes against the philosophy that SSA should be thin 
wrapper around the assembly code. 

Makes the semantics of SSA more complex and so the code 
generation more complex. 

More complex code generation: missed opportunities for SSA-based 
optimization



Compiling Dynamic Typing
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Approach 2: implement dynamic typing in the translation to SSA

In this approach, SSA values are as before always 64-bit integers, and 
SSA operations work on these 64-bit integers (as they do now)




Compiling Dynamic Typing
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Approach 2: implement dynamic typing in the translation to SSA


x * y check_y(): 
  y_bit = y & 1 
  c = y_bit == 0 
  cbr mult_xy() err() 
mult_xy(): 
  tmp = x * y 
  z = tmp >> 1 
  ret z 
x_bit = x & 1 
b = x_bit == 0 
cbr check_y() err() 
...

Diamondback SSA



Compiling Dynamic Typing
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Approach 2: implement dynamic typing in the translation to SSA


Benefit: code generation is very simple, at cost of SSA lowering more 
complex

Downside: difficult to optimize unnecessary tag checks away



Compiling Dynamic Typing
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Approach 3: implement dynamic typing in multiple passes


In lowering to SSA, make some aspects of dynamic typing explicit but 
leave the tag checking as primitive operations.


Implement the tag checking in the x86 code generation.



Compiling Dynamic Typing
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Approach 3: implement some dynamic typing in SSA lowering


x * y assertInt(x) 
assertInt(y) 
half = x >> 1 
r = half * y 
ret r

Diamondback SSA

Insert type tag assertions in SSA, implement bit-twiddling manually




Compiling Dynamic Typing
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Approach 3: implement some dynamic typing in SSA lowering


assertInt(x) 
SSA

mov rax, [rsp - offset(x)] 
test rax, 1 
jnz assert_int_fail 
... 
assert_int_fail: 
  sub rsp, 8 
  call snake_assert_int_error

x86



Compiling Dynamic Typing
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Optimization opportunity


def fact(x): 
  if x == 0: 
    1 
  else: 
    x * fact(x - 1) 
in 
fact(7)

Diamondback SSA

... 
tmp1 = x - 1 
tmp2 = call fact(tmp1) 
assertInt(x) 
assertInt(tmp2) 
r = x * tmp2 
ret r

will these assertInt ever fail?



Compiling Dynamic Typing
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Optimization opportunity


def fact(x): 
  if x == 0: 
    1 
  else: 
    x * fact(x - 1) 
in 
fact(7)

Diamondback SSA

... 
tmp1 = x - 1 
tmp2 = call fact(tmp1) 
assertInt(x) 
assertInt(tmp2) 
r = x * tmp2 
ret r

with a simple static analysis determine that 
x, tmp2 always have the correct tag for an 
Int. Remove unnecessary assertions



Compiling Dynamic Typing
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Compare to approach 2:


x * y check_y(): 
  y_bit = y & 1 
  c = y_bit == 0 
  cbr mult_xy() err() 
mult_xy(): 
  tmp = x * y 
  z = tmp >> 1 
  ret z 
x_bit = x & 1 
b = x_bit == 0 
cbr check_y() err() 
...

Diamondback SSA

how would we remove the 
checking from the code on the 
right?



Summary: Adding Dynamic typing
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How does adding dynamic typing affect each pass of our compiler?



Changes to Frontend
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New error: only 63-bit integers are supported, so need to reject 64-bit 
values in the parser/frontend



Changes to Middle End
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Diamondback values: tagged data, either a 63-bit int, or true or false

SSA values: 64-bit integers


Add primitive assertions assertInt and assertBool to SSA

Use bitwise masking and left/right shift in SSA to encode the correct 
semantics of Diamondback values and operations



Changes to Back End

27

Implement assertInt and assertBool operations in x86, calling out to 
functions implemented in Rust to display appropriate errors



Changes to Runtime (stub.rs)
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Parse input arguments into snake values.

Update printing to account for new representation

Implement functions that display runtime errors and exit the process

http://stub.rs


State of the Snake Language

Adder: Straightline Code (arithmetic circuits)


Boa: local control flow (finite automata)


Cobra: procedures, extern (pushdown automata)
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Snake v4: Diamondback


1. Add new datatypes, use dynamic typing to distinguish them at runtime


2. Include heap-allocated variable-sized arrays, allowing for unrestricted memory 
usage 

Computational power: Turing complete



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  [x , x + 1, x + 2] 

allocate an array with a statically known size



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  newArray(x) 

allocate an array with dynamically determined size (elements initialized to 0)



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let a = [x , -1 * x ] in 

a[0] 

array indexing



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let a = [x , -1 * x ] in 

let _ = a[1] := a[1] + 1 in 
a[1] 

arrays can be mutably updated



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let a = [x , -1 * x ] in 
  length(a) 

should be able to access the length of any array value 



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let a = [x , -1 * x ] in 

a[3] 

Out of bounds access/update should be runtime errors



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let a = [x , -1 * x ] in 

isArray(a) 

support tag checking as with ints, bools



Extending the Snake Language
Diamondback: Arrays
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def main(x): 
  let list = [0, 1, false] in 
  let _ = list[2] := list in 

... 

mutable updates allow for cyclic data



Concrete Syntax
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Abstract Syntax

39



Extending the Snake Language
Diamondback: Arrays
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Semantics:


1. Each time we allocate an array should be a new memory location, so 
that updates don't overwrite previous allocations


2. What value does e1[e2] := e3 produce?

  options: a constant, the value of e1 or e3, the old value of e1[e2]


3. Is equality of arrays by value or by reference?


  [0, 1, 2] == [0 , 1, 2]



Allocating Arrays
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Where should the contents of our arrays be stored?


- Stack?


- Heap?



Stack Allocation
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Can we allocate our arrays on the stack?


def main(x): 
  let a = [x , -1 * x ] in 

a[1] := 0 



Stack Allocation
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Can we allocate our arrays on the stack?


def main(x): 
  let a = [0, 1] in 
  def f(n): 
    a[n] + a[n + 1] 
  in  
  x + f(0) 



Stack Allocation
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Can we allocate our arrays on the stack?


def main(x): 
 def f(): 
    [0, 1, 2, 3, 4] 
  in  
 def g(arr, i, j, k): 
   arr[i] * arr[j] * arr[k] 
 in 
 let arr = f() in 
 g(arr, 0, 2, 4) 

 

If f allocates in its stack frame 
and returns a pointer, 


The memory will be 
overwritten by any future calls


Doing this safely would require 
copying any returned data 
into the caller's stack frame. 
Not feasible for dynamically 
sized values.



Stack Allocation
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Dynamically sized data can only feasibly be stack allocated if it is local to the 
function, i.e., only used in call stacks that contain the current function's stack 
frame.


If the dynamically sized data is returned from the function that allocates it, we 
instead allocate it in a separate memory region, the heap, and return a pointer 
to it.



Heap Allocation
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The heap contains data whose lifetime is not tied to a local stack frame.


This makes the usage of the data more flexible, but complicates the question of 
when the data is deallocated.


For today, let's assume we do not deallocate memory.

A strategy used in some specialized applications (missiles)


Today's simple heap model: the heap is a large region of memory, disjoint from 
the stack, some of it is used, and we have a pointer to the next available portion 
of memory.



Heap Allocation
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The heap contains data whose lifetime is not tied to a local stack frame.


This makes the usage of the data more flexible, but complicates the question of 
when the data is deallocated.


For today, let's assume we do not deallocate memory.

A strategy used in some specialized applications (missiles)




The Heap
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Let's take a particularly simple view of the heap for now: the heap is a large 
region of memory, disjoint from the stack. Some amount of this space is used, 
and we have a heap pointer that points to the next available region.


If memory is never deallocated (but also in copying gc), the structure is similar 
to the stack: we have a region of used space and a region of free space and the 
heap pointer, like the stack pointer, points to the beginning of the free space.


While the stack grows downward in memory, the heap grows upward.



Memory Management
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Need our assembly programs to have access to the heap pointer at all times.


We will implement management of the heap in our runtime system, i.e., in Rust. 
Our assembly code programs will interface with the runtime system by calling 
functions the runtime system provides.



Implementing Arrays
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When we implement arrays, we have two different representations to define:

1. How they are stored as "objects" in the heap

2. How they are represented as Snake values



Arrays as Objects
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What data does an array need to store?


1. Need to layout the values sequentially so we can implement get/set

2. Need to store the length of the array to implement length as well as bounds 
checking for get/set.




Arrays as Values
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The Snake value we store on the stack for an array is a tagged pointer to the 
array stored on the heap.


We overwrite the 2 least significant bits of the pointer with the tag 0b11.


This is safe, as long as those 2 least significant bits of the pointer contain no 
information, i.e., if they are always 0.


2 least significant bits of a pointer are 0 means the address is a multiple of 4, 
meaning the address is at a 4-byte alignment.


All arrays on our heap take up size that is a multiple of 8 bytes, so as long as the 
base of the heap is 4-byte aligned, we maintain this invariant.



Heap/Runtime Demo
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Live code: runtime system



Heap/Runtime Demo
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Summary:


Pre-allocate a large chunk of memory for our Snake program to use as its heap.


Allocation is managed by the runtime system, i.e., the stub.rs code.

http://stub.rs

