
February 17
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 10:
Dynamic Typing

1

Announcements

2

- Assignment 3 released

- extern functions, lambda lifting, SysVAMD64 calling convention

- Start early!

State of the Snake Language

Adder: Straightline Code (arithmetic circuits)

Boa: local control flow (finite automata)

Cobra: procedures, extern (pushdown automata)

3

Remaining limitations:

1. Only data are ints (booleans are really just special ints)

2. Only ways to use memory are local variables and the call stack

State of the Snake Language

Adder: Straightline Code (arithmetic circuits)

Boa: local control flow (finite automata)

Cobra: procedures, extern (pushdown automata)

4

Snake v4: Diamondback

1. Add new datatypes, use dynamic typing to distinguish them at runtime

2. Include heap-allocated variable-sized arrays, allowing for unrestricted memory usage

Computational power: Turing complete

Booleans in Boa/Cobra

In Boa/Cobra, booleans and integers weren't truly distinct datatypes.

- All integers could be used in logical operations

- All booleans could be used in arithmetic operations

5

Booleans in Boa/Cobra

The following are all valid programs with well-defined semantics in Boa/Cobra

-1 && 3

true + 5

7 >= false

Let's change the language semantics so these are errors instead.

6

Booleans in Boa/Cobra

Can we implement operations isInt and isBool that distinguish between
integers and booleans?

isInt(true) == false

isInt(1) == true

No, true and 1 have the exact same representation at runtime

7

Static vs Dynamic Typing
How would we implement a language where integers and booleans were considered
disjoint?

1. Static Typing (C/C++, Java, Rust, OCaml)

Identify the runtime types of all variables in the program

Reject type-based misuse of values in the frontend of the compiler.

2. Dynamic Typing (JavaScript, Python, Ruby, Scheme)

Use type tags to identify the type of data at runtime

Reject type-based misuse of values at runtime, right before the operation is performed

8

Static Typing vs Dynamic Typing
Example 1:

 true + 5

Static typing: compile time error: true used where integer expected

Dynamic typing: runtime error: addition operation expects inputs to be integers

9

Static Typing vs Dynamic Typing
Example 2:

def main(x):
 x + 5

Static typing: need to declare a type for x, in this case int

Dynamic typing: succeed at runtime if x is an int, otherwise fail

10

Static Typing vs Dynamic Typing
Example 2:

def main(a):
 def complex_function(): ... in
 let x = if complex_function(): 1 else: true
 x + 5

Static typing: reject this program, even if complex_function always returns true

Dynamic typing: succeed at runtime if complex_function returns true,
otherwise fail

11

Static Typing vs Dynamic Typing
Static Typing

Easier on the compiler: if type information is reliable, we can use that to inform
the runtime representation of our compiled values

Easier on the programmer? Types document the code, aid in tooling, design

Dynamic Typing

Easier on the programmer? Complex patterns that are difficult to assign static
types are possible

12

Static Typing vs Dynamic Typing
Poll: Is static typing or dynamic typing better?

My opinion:

I prefer static typing, but both are popular enough to be worth studying and
implementing well.

In Assignment 4, we'll implement dynamic typing

In Assignment 5, perform optimizations to reduce the runtime overhead of
dynamic typing

Revisit syntactic aspects of static typing and the relation with static analysis
later in the course.

13

Semantics of Dynamic Typing

Live code interpreter

14

Semantics of Dynamic Typing
• A Snake value is not just an int anymore. It is either an int or a boolean, and

we need to be able to tell the difference at runtime in order to determine
when we should error and how to implement isInt, isBool.

• Many operations can now produce runtime errors if type tags are incorrect,
need to specify

• what the appropriate error messages are

• evaluation order between expressions executing and type tags

• true + (let _ = print(3) in 3)

• does this print 3 before it errrors?

15

Representing Dynamically Typed Values

16

In Adder/Boa/Cobra, all runtime values were integers.

In Diamondback, a runtime value must have both a type tag and a
value that matches the type tag

How should we represent tags and values in our compiled program?

Representing Dynamically Typed Values

17

Approach 1: Values as 8 bytes, Tags as extra data

A snake value is 9 bytes

the first byte is a tag: 0x00 for integer, 0x01 for boolean. Use a full
byte to keep our values byte-aligned

the remaining 64 bits are the underlying integer, bool or pointer

Upside: Faithful representation of our Rust interpreter

Downside: 1 byte memory overhead for all values plus padding, calling
convention and architecture are 8-byte oriented, tedious to implement
pervasively

Representing Dynamically Typed Values

18

Approach 2: Values as pointers

A snake value is a 64-bit pointer to an object on the heap

value stored on the heap can then be whatever size we want, the
pointer is always 64 bits.

store a tag and value on the heap similarly to previous approach.

A value stored in this way is called boxed.

Representing Dynamically Typed Values

19

Approach 2: Values as pointers

A snake value is a 64-bit pointer to an object on the heap

value stored on the heap can then be whatever size we want, the
pointer is always 64 bits.

store a tag and value on the heap similarly to previous approach.

Upside: uniform implementation, 64-bit values can be compiled as before

Downside: memory overhead. Accessing the tag requires a non-local
memory access, performing an arithmetic operation multiple

Approach taken in Python

Representing Dynamically Typed Values

20

Approach 3: compromise

A snake value is a 64-bit value.

Use the least significant bits of the value as a tag.

Represent simple data like integers, booleans within the 64-bits

Represent large datatypes like arrays, closures, structs as pointers to the heap

Upside: use stack allocation more often

Downside: can't fit 64 bits and a tag...

Roughly the approach used in high-performance Javascript engines (v8) as well
as some garbage-collected typed languages (OCaml)

Representing Dynamically Typed Values

21

To implement our compiler, we need to specify

1. How each of our Snake values are represented at runtime

2. How to implement the primitive operations on these representations

Integers

22

Implement a snake integer as a 63-bit signed integer followed by a 0 bit
to indicate that the value is an integer

I.e., represent a 63-bit integer n as the 64-bit integer 2 * n

Booleans

23

The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b01 to distinuish from integers and other
datatypes

Use the remaining 62 bits to encode true and false as before as 1 and 0

2^62 - 2 bit patterns are therefore "junk" in this format

Boxed Data

24

The least significant bit must be 1 to distinguish from integers

Use least significant bits 0b11 to distinguish from booleans.

Use remaining 62-bits to encode a pointer to the data on the heap

Why is this ok? Discuss more thoroughly on Wednesday

Representing Dynamically Typed Values

25

least
significant

bit

63-bit
integer

2nd least
significant

bit

boolean

boxed value
on the heap

0

1

0

1

Implementing Dynamically Typed Operations

26

We need to revisit our implementation of all primitives in assembly code
to see how they should work with our new datatype representations.

1. Arithmetic operations (add, sub, mul)

2. Inequality operations (<=, <, >=, >)

3. Equality

4. Logical operations (&&, ||, !)

As well as supporting our new operations isInt and isBool

Implementing Dynamically Typed Operations

27

In dynamic typing, implementing a primitive operation has two parts:

1. How to check that the inputs have the correct type tag

2. How to actually perform the operation on the encoded data

Implementing Dynamically Typed Operations

28

Live code

