
February 12
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 9:
Non-tail Function Definitions, Lambda Lifting

1

State of the Snake Language

Adder: Straightline Code

Boa: Conditionals + Tail-called functions = arbitrary "local"
control flow.

2

Good for implementing the "bodies" of functions, but missing key features:

1. Interaction with the Operating System (stdin/stdout, file I/O, random number
generation)

2. Reusable sub-procedures (functions with non-tail calls)

Add these in Cobra

State of the Snake Language

Adder: Straightline Code

Boa: Conditionals + Tail-called functions = arbitrary "local"
control flow.

3

Good for implementing the "bodies" of functions, but missing key features:

1. Interaction with the Operating System (stdin/stdout, file I/O, random number
generation)

2. Reusable sub-procedures (functions with non-tail calls)

Add these in Cobra

Running Examples
Non-tail calls

4

def main(x):
 def max(m,n):
 if m >= n: m else: n
 in
 max(10, max(x, x * -1))

non-tail and tail call of the same
function

Running Examples
Non-tail calls

5

captured variables in non-tail called function

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

Design Goals
Non-tail calls

6

We want to support the ability to call or tail call our internally defined functions.

We want tail calls to be implemented the same way as in Boa: this ensures tail-
recursive functions are still compiled efficiently.

We want calls to be implemented using the System V AMD64 calling
convention. This allows us to compile calls to Rust or Cobra functions the same
way, simplifying code generation.

Example: max (live code)

7

Example: max (live code)

8

Make two different labeled code blocks in assembly:

- a block that is tail called, just as in Boa.

- a block that is called, which then moves the arguments to the stack and jumps
to the tail call block.

Change to SSA

9

Previously we had one code block that would be called with the SysV calling
convention: main

Generalize this to have many top level function blocks in SSA.

The body of a function block should immediately branch with arguments to an
ordinary SSA block, which is compiled as before.

In code generation: compile these as moving the arguments from the SysV
AMD64-designated locations to the stack.

Change to SSA: Abstract Syntax

10

An SSA program has three parts:

1. Extern declarations

2. Function blocks

3. Top-level Basic blocks

Side condition: one of the function blocks has the unmangled name "entry", corresponding to the main function in the source
program.

All of these are globally scoped: functions can branch to any of the top-level blocks and vice-versa the blocks can call any of
the functions.

Change to SSA: Abstract Syntax

11

Function blocks always have the same structure: immediately branch to one of
the top-level blocks

SSA Generation Example

12

def main(x):
 def max(m,n):
 if m >= n: m else: n
 in
 max(10, max(x, x * -1))

block max_tail(m, n):
 ... as in Boa
block main_tail(x):
 tmp1 = x * -1
 tmp2 = call max_fun(x, tmp1)
 br max_tail(10, tmp2)
fun max_fun(m, n):
 br max_tail(m, n)
fun entry(x):
 br main_tail(x)

give the blocks and funs different names as we
need to assign both of them labels in code
generation

Functions vs Basic Blocks in SSA

13

In SSA, we make a distinction between functions and parameterized blocks

Both have a label and arguments, but the way they are used and compiled is
different

Functions can only ever be the target of a call, using the System V AMD64
ABI

Blocks can only ever be the target of a branch, where arguments are placed
at stack offsets

Blocks can be nested as sub-blocks within other blocks, can refer to outer
scope

Functions are only ever top-level, only variables in scope inside are
arguments

Code Generation for Function Blocks

14

fun max_fun(m, n):
 br max_tail(m, n)

max_fun:
 mov [rsp - 8], rdi
 mov [rsp - 16], rsi
 jmp max_tail

Functions are just a thin wrapper around their blocks,
mov arguments from where the calling convention
dictates to where the block expects them to be (on
the stack)

Variable Capture

15

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

x is "captured" by the function pow in that it is used in the function because it is
in scope when the function pow is defined.

Why does this work?

Variable Capture

16

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

Variable Capture

17

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

acc

n

x

Return Addressrsp

Variable Capture

18

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

acc: 1

n: 3

x

Return Addressrsp

first iteration

Variable Capture

19

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

acc: x * 1

n: 2

x

Return Addressrsp

second iteration

Variable Capture

20

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

acc: x * x * 1

n: 1

x

Return Addressrsp

third iteration

Variable Capture

21

def main(x):
 def pow(n, acc):
 if n == 0: acc else: pow(n - 1, x * acc)
 in
 pow(3, 1)

acc: x * x * x * 1

n: 0

x

Return Addressrsp

final iteration

Variable Capture

22

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

x is "captured" by the function pow in that it is used in the function because it is
in scope when the function pow is defined.

But now pow is not tail-recursive. What happens?

Variable Capture

23

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

n: 3

x

Return Addressrsp

initial tail call

Variable Capture

24

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

n: 2

Return Address

n: 3

x

Return Address

rspfirst non-tail recursive call

Variable Capture

25

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

n: 1

Return Address

n: 2

Return Address

n: 3

x

Return Address

rsp

second non-tail recursive call

Variable Capture

26

Variable capture in a tail-called function is not a problem, as the captured
variables are still available in our local stack frame.

Variable capture in a called function is an issue: the distance from the current
stack pointer to the location of the captured variable is not statically determined

Can solve this by copying the value into each stack frame.

Implement as a code transformation: add all the captured variables as extra
arguments. This process is called lambda lifting.

Lambda Lifting (As AST to AST transform)

27

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

def pow(x, n):
 if n == 0: 1 else x * pow(x, n - 1)
def main(x):
 pow(x, 3)

Variable Capture

28

def pow(x, n):
 if n == 0: 1 else x * pow(x, n - 1)
def main(x):
 pow(x, 3)

n: 2

x

Return Addressrsp

initial tail call

Variable Capture

29

def pow(x, n):
 if n == 0: 1 else x * pow(x, n - 1)
def main(x):
 pow(x, 3)

first non-recursive call

n: 2

x

Return Address

n: 3

x

Return Address

rsp

Lambda Lifting

30

Instead of an AST to AST transform, incorporate this in our AST to SSA
transformation.

In the lowering to SSA, any function that is called must be "lifted" to the top-
level, where all captured variables are added as extra arguments, and all calls or
branches pass the additional arguments.

Lambda Lifting (As AST to SSA transform)

31

def main(x):
 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3) block pow_tail(x, n):

 b = n == 0
 thn():
 ret 1
 els():
 n2 = n - 1
 r = call pow_call(x, n)
 tmp = x * r
 ret tmp
 cbr b thn() els()
block main_tail(x):
 br pow_tail(x, 3)
fun pow_call(x, n):
 br pow_tail(x, n)
fun main(x):
 br main_tail(x)

Lambda Lifting: Details

32

To implement lambda lifting, we need to address two questions.

1. Which functions need to be lifted?

2. Given a function to be lifted, which arguments need to be added?

For both of these we need to consider

1. Correctness

 Must ensure every function that must be lifted is lifted and that every
argument that must be added is added, but we can over-approximate by
lifting more than necessary and adding more arguments than necessary

2. Efficiency

Lifting too many functions or adding too many arguments can impact runtime
and space usage in our generated programs.

Correctness is always a must. Efficiency is best-effort.

Lambda Lifting: Who to Lift

33

What definitions need to be lifted?

- any function that is (non-tail) called needs to be lifted

- the tail-callable version of that function also needs to be lifted

Any other functions? 

Yes: any function that is tail called by a lifted function must also be lifted, even if
it is never non-tail called

34

def main(a):
 def e(): a * 2 in
 def f(): a in
 def g(): f() in
 def h(b): if b: g() else: e() in
 def k(): h(a) + 1 in
 k()

Lambda Lifting: Who to Lift
Which of e,f,g,h,k need to be
lifted in this example?

Answer:

h must be lifted because it is
non-tail called

g, e must be lifted because
they are tail called by a lifted
function

f must be lifted because it is
tail called by a lifted function

k does not need to be lifted

35

def main(a):
 def e(): a * 2 in
 def f(): a in
 def g(): f() in
 def h(b): if b: g() else: e() in
 def k(): h(a) + 1 in
 k()

Lambda Lifting: Who to Lift
Call Graph

e

f

g

h

k

main

1. Anything (besides main) that is called needs
to be lifted

2. Anything reachable in the call graph from a
lifted function needs to be lifted

36

Lambda Lifting: Who to Lift
Call Graph

e

f

g

h

k

main

1. Anything (besides main) that is called needs to be lifted

2. Anything reachable in the call graph from a lifted function needs to
be lifted

Implement by worklist algorithm:

1. Build a call graph

2. Initialize worklist with the functions that are non-tail called

3. While the worklist is nonempty: pop a function off, add the function
to the set of functions that need to be lifted, add sucessors that are
not already identified as lifted to the worklist

Lambda Lifting: What Args to Add

37

When we lift a function, we need to add extra arguments. But which arguments need to
be added?

Answer: all the non-local variables that must be in the function's stack frame.

Which variables must be in the stack frame?

 Easy over-approximation: all the variables that are in scope at the function's definition
site.

 Tempting but incorrect: just the variables that actually occur in the body of the lifted
function?

Lambda Lifting: What Args to Add

38

def main(a):
 def e(): a * 2 in
 def f(): a in
 def g(): f() in
 def h(b): if b: g() else: e() in
 def k(): h(a) + 1 in
 k()

block e_tail(a):
 r = a * 2
 ret r
block f_tail(a):
 ret a
block g_tail(a):
 br f_tail(a)
block h_tail(a,b):
 cbr b g_tail(a) e_tail(a)
fun h_fun(a,b):
 br h_tail(a,b)
fun entry(a):
 k():
 tmp1 = call h_fun(a,a)
 tmp2 = tmp1 + 1
 ret tmp2
 br k()

Notice: need to add a to g even though it
doesn't occur syntactically in the body of g

Lambda Lifting: What Args to Add

39

Adding all variables that are in scope is correct, but inefficient. Why?

40

The easiest way to correctly implement lambda lifting is to add all variables that
are in scope as extra arguments.

But this can be inefficient:

def main(x):
 let a1 = ... in
 ...
let a100 = ... in

 def pow(n):
 if n == 0: 1 else: x * pow(n - 1)
 in
 pow(3)

fun pow_tail(a1,...a100,n):
 ...
fun entry(x):
 ...

every unnecessary variable is extra space in our stack frames!

Lambda Lifting: What Args to Add

41

When lambda lifting, we need to add captured variables to lifted functions.

Capturing all in-scope variables is correct, but can be wasteful.

Two options:

Perform a liveness analysis before lambda lifting, to determine exactly which
variables are used.

Wastefully add all variables, and perform liveness analysis afterwards, at the
SSA level, and perform parameter dropping.

We'll adopt the second approach. We'll discuss how to implement liveness
analysis later when we cover optimizations.

Lambda Lifting: What Args to Add

Cobra Overview

42

New source language features:

1. Extern functions

2. Non-tail calls to local functions or externed functions

Cobra: Frontend Changes

43

1. Remove errors for calling non-tail called functions

2. Ensure that externed functions are in scope

3. When performing name resolution, ensure that we treat extern function names

specially as "non-mangled", as opposed to our local functions, which should be
given unique names

4. Perform an analysis to determine which functions need to be lifted:

1. easy but inefficient: just say all functions must be lifted

2. harder but more efficient: analyze the call graph

5. Identify which variables need to be added to the lifted function

1. easy but inefficient: add all variables that are in scope

2. harder but more efficient: use liveness analysis

Cobra: Middle-end Changes

44

1. Tail calls to extern functions should be compiled to calls

2. Lift all functions that are identified in the frontend as needing to be lifted

3. For calls to internal functions

1. If they are tail calls, compile to a branch with arguments

2. If they are calls, compile to an SSA call

3. If the function being called is lifted, make sure to add extra arguments

4. For calls to external functions

1. Always compile to an SSA call

Cobra: Backend Changes

45

1. All calls are compiled using the System V AMD64 Calling Convention

2. Function definitions are compiled to a labeled block that moves their

arguments from the location dictated by the System V Calling Convention to
the stack and then jmp to the specified label.

Otherwise no change, the main work is handled by the lambda lifting pass

