
February 5, 2025

EECS 483: Compiler Construction
Lecture 7:
Loops, Mutable Variables

1

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

2

Imperative Snake Language

3

Imperative Snake Language "Imp"

- Mutable variables

- statement-expression distinction

- while loops

- return/break/continue

concrete syntax

4

Imperative Snake Language

abstract syntax

5

Imperative Snake Language

well-formedness

Still have a notion of scope, shadowing:

1. Check variables are declared before use

2. Shadowing is allowed, semantically shadowed var is a
different mutable variable

Translate away shadowing to unique variable names to avoid
headaches, as usual

6

Imperative Snake Language

well-formedness

7

Imperative Snake Language

undeclared var y, z

similar to existing scope checker

well-formedness

If implementing a procedure that returns a value, need to
ensure that every code path ends in a return

8

Imperative Snake Language

well-formedness

Naked break/continue:

Verify that break/continue operations only occur inside of an
enclosing while loop

9

Imperative Snake Language

semantics

Each variable acts like a 64-bit "register"

When evaluating, need to keep track of the current state of all the variables

10

Imperative Snake Language

semantics

11

Imperative Snake Language

shadowed variables should not be overwritten. Making variable
names unique makes this easier to get right

semantics

while loop:

check the condition expression

true: execute the block and repeat

false: execute the next statement

break:

in a while loop, goto the next statement after the loop

continue:

in a loop, goto the beginning of the loop

12

Imperative Snake Language

Imperative to SSA

Step 1: Expressions, variable declarations

Step 2: variable updates

Step 3: Join Points

Step 4: Loops

Step 5: Break, Continue, Return

13

Imperative to SSA

Step 1: Expressions, variable declarations

Expressions are defined just as in Adder: generate temporaries and use
continuations to turn tree of operations into straightline code

Variable declarations are implemented just as with Let: a var declaration in Imp
becomes a variable assignment in SSA

14

Imperative to SSA
Step 2: Variable Updates

15

how to compile to SSA?

idea: the updated x acts
like it's shadowing the
original. Treat it as an
assignment to a new
variable

Imperative to SSA
Step 2: Variable Updates

16

Keep track in an environment of the
current "version" of each variable in
scope

Imperative to SSA
Step 2: Variable Updates

Simple idea: replace mutable updates with assignments to a new variable

in straightline code, mutable variables are just shadowing!

17

Imperative to SSA

18

Step 2: If

Imperative to SSA

19

Imperative to SSA

20

Join points!

Imperative to SSA
Step 2: If

Generate join points for if statements.

In an imperative program, join points are parameterized not just by a single
variable, but by as many as can be updated in the two branches.

Need to calculate which variables ot include in the join point:

Simplest algorithm is called crude ϕ-node insertion: add every variable that
is in scope to the join point.

Rely on a later SSA-minimization pass to remove unnecessary parameters

Unnecessary Parameters

Imperative to SSA

Step 4: while loops

encode semantics using SSA blocks

which blocks in a loop are join points?

23

Imperative to SSA

24

loop
check e

b1 b2

Notice: loop has 2
predecessors, so it is a join
point, add block parameters

Imperative to SSA

25

Imperative to SSA

Step 5: return, break, continue

Return is easy: just compile the expression and produce the ret terminator

Break, continue: depend on the context

when we enter a while loop, we make blocks for the entry point and exit
point

continue: branch to entry of loop

break: branch to exit of loop

26

Imperative to SSA

27

loop
check e

b1 b2

Notice: loop has 2
predecessors, so it is a join
point, add block parameters

Imperative to SSA

28

loop
check e

b1 b2

If we can break, then b1 can
branch directly to b2

if break is used, b2 is also a
join point

Imperative to SSA

29

Imperative to SSA

var m = 100
var n = 25
while ! (m == n) {
 if m < n {
 n := n - m
 } else {
 m := m - n
 }
}
return m

m0 = 100
n0 = 25
loop(m2, n2):
 done(m1,n2):
 return m1
 body(m3, n3):
 lt():
 n4 = n3 - m3
 br loop(m3, n4)
 gt():
 m4 = m3 - n3
 br loop(m4, n3)
 b = m3 < n3
 cbr b lt() gt()
 c = m2 == n2
 d = not c
 cbr d body(m2, n2) done(m2, n2)
loop(m0, n0)

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

31

Minimal SSA Form

Translating Imperative code to SSA using crude phi node insertion produces
very non-minimal SSA: many extra block parameters

But because imperative code is well-structured, block sinking is not necessary,
blocks are already nested inside their immediate dominators

Only need to implement parameter dropping.

Theorem: crude phi node insertion + parameter dropping produces minimal
SSA

32

Why all the trouble?

Modern compiler infrastructure for imperative languages:

input program: mutates variables directly, variables similar semantics to
registers

middle end: translates into SSA, functional intermediate representation where
variables are never mutated

backend: translate out of SSA, map variables to registers (or memory), mutate
their values

33

SSA Benefits

Programs are easier to reason about

Common sub-expression elimination:

y and z have the same definition, so just
replace z with y.

Valid with SSA

Not valid in imperative code

34

SSA Benefits

Programs are easier to reason about

Common sub-expression elimination:

y and z have the same definition, so just
replace z with y.

Valid with SSA

Not valid in imperative code

35

SSA Benefits

Program analyses can be implemented more efficiently.

Can set up data structures that map variable uses directly
to their definitions. Skips over a great deal of irrelevant
information.

In an imperative program variables can be updated
anywhere, putting the program in SSA form makes the
dataflow information easier to access

36

SSA Benefits

When program analysis is easier:

1. More efficient generated code: Easier for compiler
writers to implement more and better analyses/
optimizations

2. More efficient compiler: accessibility of information in
SSA form allows efficient data structures for program
analysis, since more information is manifest in the
program format

37

SSA History, Benefits

Further Reading: SSA Book Chapter 1

38

