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EECS 483: Compiler Construction
Lecture 7:  
Loops, Mutable Variables
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Extending the Snake Language

What source-level programming features would allow us to 
express cyclic control-flow graphs?


1. Functional: recursive functions, tail calls


2. Imperative: loops, mutable variables 

We'll look at these each in turn and study how to compile them 
to SSA.
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Imperative Snake Language
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Imperative Snake Language "Imp"


- Mutable variables


- statement-expression distinction


- while loops


- return/break/continue



concrete syntax
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Imperative Snake Language



abstract syntax
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Imperative Snake Language



well-formedness

Still have a notion of scope, shadowing:


1. Check variables are declared before use


2. Shadowing is allowed, semantically shadowed var is a 
different mutable variable


Translate away shadowing to unique variable names to avoid 
headaches, as usual
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Imperative Snake Language



well-formedness
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Imperative Snake Language

undeclared var y, z


similar to existing scope checker



well-formedness

If implementing a procedure that returns a value, need to 
ensure that every code path ends in a return 
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Imperative Snake Language



well-formedness

Naked break/continue:


Verify that break/continue operations only occur inside of an 
enclosing while loop
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Imperative Snake Language



semantics

Each variable acts like a 64-bit "register"


When evaluating, need to keep track of the current state of all the variables
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Imperative Snake Language



semantics

11

Imperative Snake Language

shadowed variables should not be overwritten. Making variable 
names unique makes this easier to get right



semantics

while loop:


check the condition expression


true: execute the block and repeat


false: execute the next statement


break:


in a while loop, goto the next statement after the loop


continue:


in a loop, goto the beginning of the loop
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Imperative Snake Language



Imperative to SSA

Step 1: Expressions, variable declarations


Step 2: variable updates


Step 3: Join Points


Step 4: Loops


Step 5: Break, Continue, Return
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Imperative to SSA

Step 1: Expressions, variable declarations 

Expressions are defined just as in Adder: generate temporaries and use 
continuations to turn tree of operations into straightline code


Variable declarations are implemented just as with Let: a var declaration in Imp 
becomes a variable assignment in SSA
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Imperative to SSA
Step 2: Variable Updates 
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how to compile to SSA?

idea: the updated x acts 
like it's shadowing the 
original. Treat it as an 
assignment to a new 
variable



Imperative to SSA
Step 2: Variable Updates 
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Keep track in an environment of the 
current "version" of each variable in 
scope



Imperative to SSA
Step 2: Variable Updates 

Simple idea: replace mutable updates with assignments to a new variable


in straightline code, mutable variables are just shadowing!
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Imperative to SSA
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Step 2: If 



Imperative to SSA
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Imperative to SSA
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Join points!



Imperative to SSA
Step 2: If 

Generate join points for if statements.


In an imperative program, join points are parameterized not just by a single 
variable, but by as many as can be updated in the two branches.


Need to calculate which variables ot include in the join point:


Simplest algorithm is called crude ϕ-node insertion: add every variable that 
is in scope to the join point.


Rely on a later SSA-minimization pass to remove unnecessary parameters



Unnecessary Parameters



Imperative to SSA

Step 4: while loops 

encode semantics using SSA blocks


which blocks in a loop are join points?
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Imperative to SSA
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loop
check e

b1 b2

Notice: loop has 2 
predecessors, so it is a join 
point, add block parameters



Imperative to SSA
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Imperative to SSA

Step 5: return, break, continue 

Return is easy: just compile the expression and produce the ret terminator


Break, continue: depend on the context 

when we enter a while loop, we make blocks for the entry point and exit 
point


continue: branch to entry of loop


break: branch to exit of loop
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Imperative to SSA
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loop
check e

b1 b2

Notice: loop has 2 
predecessors, so it is a join 
point, add block parameters



Imperative to SSA
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loop
check e

b1 b2

If we can break, then b1 can 
branch directly to b2


if break is used, b2 is also a 
join point



Imperative to SSA
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Imperative to SSA

var m = 100 
var n = 25 
while ! (m == n) { 
  if m < n {  
    n := n - m 
  } else {  
    m := m - n 
  } 
} 
return m

m0 = 100 
n0 = 25 
loop(m2, n2): 
  done(m1,n2): 
    return m1 
  body(m3, n3): 
    lt(): 
      n4 = n3 - m3 
      br loop(m3, n4) 
    gt(): 
      m4 = m3 - n3 
      br loop(m4, n3) 
    b = m3 < n3 
    cbr b lt() gt() 
  c = m2 == n2 
  d = not c 
  cbr d body(m2, n2) done(m2, n2) 
loop(m0, n0)



Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as 
possible.


Useful for optimization: branching to a block with arguments is compiled to a 
mov, potentially causing memory access. Want to reduce these as much as 
possible.
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Minimal SSA Form

Translating Imperative code to SSA using crude phi node insertion produces 
very non-minimal SSA: many extra block parameters


But because imperative code is well-structured, block sinking is not necessary, 
blocks are already nested inside their immediate dominators


Only need to implement parameter dropping.


Theorem: crude phi node insertion + parameter dropping produces minimal 
SSA
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Why all the trouble?

Modern compiler infrastructure for imperative languages:


input program: mutates variables directly, variables similar semantics to 
registers


middle end: translates into SSA, functional intermediate representation where 
variables are never mutated


backend: translate out of SSA, map variables to registers (or memory), mutate 
their values
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SSA Benefits

Programs are easier to reason about


Common sub-expression elimination:


y and z have the same definition, so just 
replace z with y.


Valid with SSA


Not valid in imperative code
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SSA Benefits

Programs are easier to reason about


Common sub-expression elimination:


y and z have the same definition, so just 
replace z with y.


Valid with SSA


Not valid in imperative code
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SSA Benefits

Program analyses can be implemented more efficiently.


Can set up data structures that map variable uses directly 
to their definitions. Skips over a great deal of irrelevant 
information.


In an imperative program variables can be updated 
anywhere, putting the program in SSA form makes the 
dataflow information easier to access  
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SSA Benefits

When program analysis is easier:


1. More efficient generated code: Easier for compiler 
writers to implement more and better analyses/
optimizations


2. More efficient compiler: accessibility of information in 
SSA form allows efficient data structures for program 
analysis, since more information is manifest in the 
program format
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SSA History, Benefits

Further Reading: SSA Book Chapter 1
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