EECS 483: Compiler Construction

Lecture 7:
Loops, Mutable Variables

February 5, 2025

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs??

1. Functional: recursive functions, tail calls
2. Imperative: loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

Imperative Snake Language

Imperative Snake Language "Imp" var m = 100;
| var n = 25;
- Mutable variables while !(m ==
- statement-expression distinction ifm<nA
n :=n-m
- while loops } else {
- return/break/continue \ M=M=
}

return m

) {

Imperative Snake Language

concrete syntax

<block>: :
<expr:

<statement>

<statement> (;) <statement>

<Statement>.

IDENTIFIER (=) <expr>

IDENTIFIER {exXpr>

if)<expr> ({) <block>

if)<expr> ({] <block> (} <block>
while| <expr> {| <block>

continue}

) (=)
) (&)

IDENTIFIER
NUMBER

ifalse]

1] <expr>
<prim1D> @ <expr> @
<eXpr> <primz2» <expr>

() <expr> ()]

:b reak] —

return| <expr>

Imperative Snake Language

abstract syntax

pub enum Block {

End(Box<Statement>),
Sequence(Box<Statement>, Box<Block>),

pub enum Statement {
VarDecl(String, Expression),

VarUpdate(String, Expression), pub enum Expression {
If(Expression, Block, Block), Var(String),
IfElse(Expression, Block, Block), Num(164),

While(Expression, Block), Bool(bool),

Continue, Prim(Prim, Vec<Expression>),
Break, }

Return(Expression), L — —

Imperative Snake Language

well-formedness

Still have a notion of scope, shadowing:
1. Check variables are declared before use

2. Shadowing is allowed, semantically shadowed var is a
different mutable variable

Translate away shadowing to unigue variable names to avoid
headaches, as usual

Imperative Snake Language

well-formedness

var Xx =y + z;
return X

undeclared vary, z

similar to existing scope checker

Imperative Snake Language

well-formedness

If iImplementing a procedure that returns a value, need to
ensure that every code path ends in a return

if b {
return X;

} else {
X 1= 5

Imperative Snake Language

well-formedness

Naked break/continue:

Verify that break/continue operations only occur inside of an
enclosing while loop while x = 0 {

X 1= X —1
ify> 10 {
continue

s

}

continue

Imperative Snake Language

semantics

Each variable acts like a 64-bit "register”

When evaluating, need to keep track of the current state of all the variables

10

Imperative Snake Language

semantics

var x = 10;

if x 1=y A
var x = 14;

}

return X;

shadowed variables should not be overwritten. Making variable
names unigue makes this easier to get right

11

Imperative Snake Language

semantics

while loop:
check the condition expression
true: execute the block and repeat
false: execute the next statement
break:
in a while loop, goto the next statement after the loop
continue:

in a loop, goto the beginning of the loop

12

Imperative to SSA

Step 1: Expressions, variable declarations
Step 2: variable updates

Step 3: Join Points

Step 4: Loops

Step 5: Break, Continue, Return

13

Imperative to SSA

Step 1: Expressions, variable declarations

Expressions are defined just as in Adder: generate temporaries and use
continuations to turn tree of operations into straightline code

Variable declarations are implemented just as with Let: a var declaration in Imp

becomes a variable assignment in SSA x = 10
var x = 10; tmpd = X * X
var p = (X * X) + 5 % X + 7; tmpl = 5 % X

tmp2 = tmp@ + tmp2
p = tmp2 + 7/

14 HE B B

Imperative to SSA

Step 2: Variable Updates

15

how to compile to SSA?

iIdea: the updated x acts
like It's shadowing the
original. Treat it as an
assignment to a new
variable

Imperative to SSA

Step 2: Variable Updates

X0 = 10

tmpd = X0 x 2
X1 = tmp@ + 1
X2 = x1 + x1

Keep track in an environment of the
current "version" of each variable in
scope

Imperative to SSA

Step 2: Variable Updates
Simple idea: replace mutable updates with assignments to a new variable

In straightline code, mutable variables are just shadowing!

17

Imperative to SSA

Step 2: If

Imperative to SSA

X0 = 10
var x = 10; thn():
if y o x1 = x0 + 1
X =X+ 1 br 77
} else { els():
X = X %k 2 X2 = X0 % 2
v =% = 1 X3 = x2 -1
br 77
}

cbr y thn() els()
return X

Imperative to SSA

return X

Join points!

20

X0 = 10
jn(x4):
ret x4
thn():
X1 = x0 + 1
br jn(x1)
els():
X2 = X0 x 2
X3 = x2 -1
br jn(x3)

cbr y thn() els()

Imperative to SSA

Step 2: If
Generate join points for if statements.

In an imperative program, join points are parameterized not just by a single
variable, but by as many as can be updated in the two branches.

Need to calculate which variables ot include in the join point;

Simplest algorithm is called crude ¢-node insertion: add every variable that
IS In scope to the join point.

Rely on a later SSA-minimization pass to remove unnecessary parameters

Unnecessary Parameters

I
N
X
X

var w
return w + vy

X0 10
Z0 7/
jn(x4, y1, z1):

w = 2z1 x x4

tmp = w + vyl

ret tmp
thn():

X1l =x0 + 1

br jn(x1, yo, z0)
els():

y2 X0 *x 2

X2 x1l -1

br jn(x2, y2, z0)
cbr yo thn() els()

Imperative to SSA

Step 4: while loops
encode semantics using SSA blocks

which blocks in a loop are join points?

23

Imperative to SSA

Iobp
check e

while e {
CRAINIPZEN

b2

Notice: loop has 2
predecessors, so It Is a joIn
point, add block parameters

Imperative to SSA

loop(...): ;; loop is a join point, include all in-scope vars
done():

while e { .+« ;; compiled code for b2

bl * body():

. ;; compiled code for bl
b2 C = ... ,; compiled code for e

br loop(...)
cbr ¢ body() done()
br loop(...)

25

Imperative to SSA

Step 5: return, break, continue
Return is easy: just compile the expression and produce the ret terminator
Break, continue: depend on the context

when we enter a while loop, we make blocks for the entry point and exit
point

continue: branch to entry of loop

break: branch to exit of loop

26

Imperative to SSA

Iobp
check e

while e {
CRAINIPZEN

b2

Notice: loop has 2
predecessors, so It Is a joIn
point, add block parameters

Imperative to SSA

while x != 0 { loop
¥ = x — 1 check e

ify>10 { K//i;;// \\\\
break

} * — b2
If we can break, then b1 can

} branch directly to b2

If break Is used, b2 is also a
join point

28

Imperative to SSA

loop(...): ;; loop is a join point, include all in-scope vars
done(...): ;; done is a join point as well because of break

Wh lle e { ... ;3 compiled code for b2
body () :
bl . ;3 compiled code for bl
* br loop(...)
C= ... ;; compiled code for e
b2 cbr ¢ body() done(...)
br loop(...)

29

Imperative to SSA

mo = 100
no =(25)
— Lloop(m2, n2):
var m B 100 done(ml,n2):
var n = 25 return ml
' I (m == n) { -
while ! N body(m3, n3):
ifm<n { Lt():
N *=n —m n4 = n3 — m3
br loop(m3, n4)
b else { = 4 gt
m 1= M — N m4d = m3 — n3
1 br loop(m4, n3)
s br b0 gt ()
cbr b Lt() gt
return m C = m2 == n2
d = not c

cbr d body(m2, n2) done(m2, n2)
loop(m@, nod)

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

31

Minimal SSA Form

Translating Imperative code to SSA using crude phi node insertion produces
very non-minimal SSA: many extra block parameters

But because imperative code is well-structured, block sinking is not necessary,
blocks are already nested inside their immediate dominators

Only need to implement parameter dropping.

Theorem: crude phi node insertion + parameter dropping produces minimal
SSA

32

Why all the trouble?

Modern compiler infrastructure for imperative languages:

iInput program: mutates variables directly, variables similar semantics to
registers

middle end: translates into SSA, functional intermediate representation where
variables are never mutated

backend: translate out of SSA, map variables to registers (or memory), mutate
their values

33

SSA Benefits

Programs are easier to reason about
Common sub-expression elimination:

y and z have the same definition, so just
replace z with .

Valid with SSA

Not valid in imperative code

34

R
| .|
o€
+
-

SSA Benefits

Programs are easier to reason about
Common sub-expression elimination:

y and z have the same definition, so just
replace z with .

Valid with SSA

Not valid in imperative code

35

= %
|-
o€
+
-

SSA Benefits

Program analyses can be implemented more efficiently.

Can set up data structures that map variable uses directly .

to their definitions. Skips over a great deal of irrelevant Al = 1,

information.)
y = x1 + 1;

In an imperative program variables can be updated r—
anywhere, putting the program in SSA form makes the 2 = &

dataflow information easier to access 7 = X» 4+ 1;

36

SSA Benefits

When program analysis Is easier:

1. More efficient generated code: Easier for compiler
writers to implement more and better analyses/
optimizations

2. More efficient compiler: accessibility of information in
SSA form allows efficient data structures for program
analysis, since more information is manifest in the
program format

37

SSA History, Benefits

Further Reading: SSA Book Chapter 1

