
February 3, 2025

EECS 483: Compiler Construction
Lecture 6:
Tail Calls

1

Announcements

2

- Assignment 2 released today, due on Friday February 14.

- Builds on solution to Assignment 1: can use your own Assignment 1
solution or our provided reference solution as a starting point.

So far:

Adder: straightline sequence of operations

Boa so far: control-flow DAGs

This week:

cyclic control-flow graphs

computational power: finite automata

3

Extending the Snake Language

Cyclic Control Flow in Assembly and SSA

live code

4

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

5

Extending the Snake Language

What source-level programming features would allow us to
express cyclic control-flow graphs?

1. Functional: recursive functions, tail calls

2. Imperative: while/for loops, mutable variables

We'll look at these each in turn and study how to compile them
to SSA.

6

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?
7

Extending the Snake Language

8

Extending the Snake Language

9

Examples
recursion

10

Function definitions are recursive: the function
is in scope within its own body as well as in
the body of the continuation of its definition

Examples
mutual recursion

11

Function definitions separated by an and are
mutually recursive. Mutually recursive
functions are all in scope of each other.

Examples
variable capture

12

Function definitions can access variables in
scope at their definition site.

First-order vs Higher-order Functions

In first-order programming languages, we can have function definitions but
functions cannot be passed around as values

In higher-order programming languages, functions can be passed as values,
returned from functions/expressions etc.

For now: first-order, return to higher-order later in the semester.

13

Function Names

Since functions cannot be values, treat them as a separate namespace.

Allow shadowing of function names, like variable declarations. Similarly, resolve
all function names to unique identifiers.

14

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of
arguments statically. Produce an error if the function is called with the wrong
number of arguments

15

Arity-Checking

If functions are first-order, we can always resolve a function call to its definition
site. So we can determine if the function is called with the right number of
arguments statically. Produce an error if the function is called with the wrong
number of arguments

16

Overloading

17

Should we allow this call?

shadowing: the inner f wins

but we can resolve the disambiguity
based on static information

Functions as Blocks

When can a function call be compiled to a branch with
arguments?

When it is in tail position, i.e., the result of the called
function is immediately returned by the caller.

If this is the case, the call can be compiled directly to a
branch.

Otherwise it is a true call and implementing it requires
storing data on the call stack. Revisit this next week

18

Tail Position

19

Tail Position

When is an expression in tail position?

- It depends on the context, not the expression itself

20

Tail Position

21

The main expression is in tail position, as its result is the
result of the main function

Tail Position

22

The args of a prim or a call are never in tail position, as we
always have to do something else after evaluating them (the
prim/call)

Tail Position

23

The expressions in the bindings are never in tail position, as we always
have to do something else after evaluating them (the let body)

The body of the let is in tail position if the let itself is in tail position

Tail Position

24

The expressions in the cond position is never in tail position, as we always
have to do something else after evaluating them (the if)

The thn and els branches are in tail position if the if itself is in tail position

Tail Position

25

The body of a fundef is in tail position if the FunDefs
expression itself is in tail position

Tail Position

26

The body of a FunDecl is always in tail position

Function definitions to Blocks

Compile each function definition directly to a corresponding
block.

Compile mutually-recursive function definitions to mutually
recursive blocks

Compile tail function calls to branch with arguments, with
left-to-right evaluation order of arguments:

27

Tail calls to Branches

28

No continuation to use

because call is assumed to be in tail
position

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

29

Compiling Branch with Arguments

Semantically, a branch with arguments is a simultaneous
move, all of the variables get updated at once.

This is not supported in our target architecture, in reality we
have to sequentialize those moves into a sequence.

Can cause correctness issues if we are not careful

30

Compiling Branch with Arguments

31

where is each variable stored?

x: rsp - 8

y: rsp - 16

a: rsp - 16

b: rsp - 24

z: rsp - 32

w: rsp - 40

Compiling Branch with Arguments

32

mov [rsp - 16], 5 ;; a = 5

mov rax, [rsp - 16]

mov [rsp - 24], rax ;; b = y

jmp f

Compiling Branch with Arguments
easy, sub-optimal solution

33

To ensure we don't overwrite memory we are about to use, we
can introduce extra temporaries for the arguments.

Since we allocate variables based on their nested definitions,
and the block we branch to is in scope, this guarantees that
the new temporaries occur higher on the stack than their
targets, so they won't be overwritten

Revisit this to get a more efficient allocation scheme when we
perform register allocation

Compiling Branch with Arguments
easy, sub-optimal solution

34

mov rax, [rsp - 24]

mov [rsp - 16], rax ;; a = a2

mov rax, [rsp - 32]

mov [rsp - 24], rax ;; b = b2

jmp f

Functional to SSA

Summary:

If a function is only ever tail-called locally, it can be compiled directly to an
SSA block with arguments. Tail calls can then be compiled to branch with
arguments

A tail call is a call to a function in tail position: the result of the function call is
immediately returned.

35

Functional to SSA

It's easy to map functional code to an SSA code since SSA is essentially
functional.

But, is that the best translation of the functional code? Probably not!

36

Minimal SSA

An SSA program is minimal if it uses as few block arguments (phi nodes) as
possible.

Useful for optimization: branching to a block with arguments is compiled to a
mov, potentially causing memory access. Want to reduce these as much as
possible.

37

Minimal SSA

38

The following SSA is not minimal

SSA Minimization

39

Minimizing SSA form consists of two phases:

1. Block Sinking: pushing block definitions lower in the SSA AST, so that more
variables are in scope of its definition

2. Parameter dropping: removing unnecessary block parameters

Block Sinking

40

Push function definitions inside of others if they are dominated. I.e., given f and
g, if g is only ever called inside f or g, then f dominates g, and so g's definition
could be sunk inside of the definition of f.

which of f1, f2, f3 dominates which?

Block Sinking

41

f1 dominates f2 dominates f3. Sink blocks accordingly:

Parameter Dropping

42

If a parameter x is always instantiated with y or itself, then we can remove x and
replace all occurrences with y as long as it is in the scope of y.

Parameter Dropping

43

Which parameters can be dropped?

Parameter Dropping

44

Which parameters can be dropped?

Parameter Dropping

45

Minimal: only block arg is y and this does take on multiple values

