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Conditionals and Continuations

We need to also account for the continuation of the if expression!


The continuation is what should happen after the result of the expression is 
computed. Now that result might be computed in either branch.


So the continuation needs to be run after either branch
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Compiling Conditionals by Copying Continuations
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Compiling Conditionals by Copying Continuations
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Compiling Conditionals by Copying Continuations
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Compiling Conditionals by Copying Continuations
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Strategy:


Make basic blocks for thn and els, giving them unique label names, compiling them 
recursively


Compile cond, do a conditional branch on the result, using the label names 
generated for thn and els 


For continuations: copy them into both branches


For next time:


The strategy we've described today does create "correct" code.


Why is the strategy completely infeasible in practice?



Exponential Blowup in Copying Continuations
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If we copy the continuation each time we perform 
an if, how many times does the


 x * x 


code appear in the generated ssa program?




Compiling Conditionals by Copying Continuations

8

Why is the strategy completely infeasible in practice? 

Copying continuation: code size is exponential in the number of sequenced if-
expressions


Generated code should be usually be linear in the size of the input program


Most compiler passes should be linear in the size of the input program


certain program analyses are not linear, and dominate compilation time



Not Copying Continuations
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Copying the continuation is infeasible because it causes an exponential blowup in code 
size.


But it does produce functionally correct code because it correctly identifies that the two 
branches share the same continuation. The best we can do with our version of SSA.


Need to add something to SSA to allow us to express that two pieces of code share the 
same continuation.




Join Points
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How would we write this manually in assembly code without copying?


Make a new block and jump to that same block at the end of each of the 
branches. This "shares" the continuation without copying, using the fact that we 
can copy the reference to the code, its label, for cheap.



Join Points
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Join Points
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How can we extend our IR to express join points?


Join points are just a new kind of block?


- Make a block for the join point


- Add a new uncdonditional branch, like an assembly jmp to our IR.



Join Points
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Our ordinary blocks aren't enough: Join points aren't just code 
blocks, they are continuations. We don't just need to execute 


  x * x


We also need to assign to x differently depending on the branch



Solution 1: Assign to x in both branches
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Pros: easy to generate assembly code


Con: breaks the "static single assignment property"


It's not clear in the join point where x is defined, makes 
program analysis, optimization much harder



Solution 2: ϕ nodes

15



Solution 2: ϕ nodes

A ϕ node is a "ϕony" operation that allows SSA format to express join points 
without breaking the SSA property.

x = ϕ(x1,x2,x3,...) 

The semantics is a little strange...The ϕ node is an assignment to x, but which 
variable it assigns depends on where we just branched from.

ϕ nodes require some syntactic restrictions:


they can only appear at the beginning of a basic block (so that we just branched).

need to make sure that the variables on the rhs are actually defined before they 
reach the ϕ node.

need to pick some kind of ordering, so we actually know which variable 
corresponds to which branch



Solution 2: ϕ nodes

A ϕ node is a "ϕony" operation that allows SSA format to express join points 
without breaking the SSA property.


x = ϕ(x1,x2,x3,...) 

Pros: maintains the SSA property, popular in SSA literature, used in long-
established industrial SSA-based compilers (LLVM, GCC, Hotspot)


Cons: strange semantics, strange code generation (the move happens in the 
predecessor block!), difficult to enforce syntactic restrictions



Solution 3: Parameterized Blocks
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Represent the continuation directly in the syntax: a 
block can have parameters just like a continuation 
has an input variable.


Directly allow us to turn continuations into blocks
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Represent the continuation directly in the syntax: a 
block can have parameters just like a continuation 
has an input variable.


Directly allow us to turn continuations into blocks

Solution 3: Parameterized Blocks
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Represent the continuation directly in the syntax: a 
block can have parameters just like a continuation 
has an input variable.


Directly allow us to turn continuations into blocks

Solution 3: Parameterized Blocks



ϕ Nodes vs Parameterized Blocks

A parameterized block adds "arguments" to our basic blocks


l(x1,x2,x3): 

These arguments are like other variables, they are in scope for the block, but not outside of it.


Branching to a parameterized block means providing arguments to it


br l(y1,y2,y3) 

Pros: maintains the SSA property, simple code generation, simple well-formedness condition, 
used in newer SSA-based compilers (Swift, MLIR, MLton)


Cons: separates the different join points syntactically in the SSA program, need to translate 
most SSA papers from phi node notation



ϕ Nodes vs Parameterized Blocks

ϕ nodes put assignment in the block itself, parameterized 
blocks put the "asignment in the predecessor



Control Flow Graph
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We can visualize SSA programs using control-flow graphs.

Nodes of CFG: basic blocks

edges are branches

entry 
cbr y thn els

thn 
x = 5 
res = x * x 
ret res

els 
x = 6 
res = x * x 
ret res



Control Flow Graph
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We can visualize SSA programs using control-flow graphs.

Join point: multiple predecessors

entry 
cbr y thn els

thn 
jn(5)

els 
jn(6)

jn(x) 
res = x * x 
ret res



Control Flow Graph
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Join points are needed to express sharing. Conditional code like our source 
produces a DAG. DAGs can be simulated with trees, but with an exponential blowup!

entry 
cbr y thn els

thn 
jn(5)

els 
jn(6)

jn(x) 
res = x * x 
ret res

entry 
cbr y thn els

thn 
x = 5 
res = x * x 
ret res

els 
x = 6 
res = x * x 
ret res



Control Flow Graph
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A common way to think about SSA programs is in terms of control-flow 
graphs.


With branching, but no join points, we can express control-flow trees.


Join points allow us to express control-flow DAGs which can be exponentially 
more compact than trees. 

If we remove the acyclicity requirement, we can express loops and even more 
exotic control flow. Revisit this next week



SSA Abstract Syntax
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Well-formedness of SSA Programs
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A benefit of sub-blocks and parameterized blocks is that we have a similar 
notion of scope that we do in our Snake language.


Sub-blocks declare the names of blocks: those blocks should only be used 
within the body of the sub-block declaration


Operations and Basic blocks declare the names of variables: those should only 
be used within the body of the block after the declaration.


We can adapt our scope checker from the Snake language AST to the SSA 
programs. Gives us a "linting" pass that can help us find bugs if we accidentally 
made ill-formed SSA programs. If we implemented our compiler correctly, this 
should always succeed, but can be helpful for debugging. 



Compiling Conditionals by Copying Continuations
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+
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+

Compiling Conditionals by Generating Joins

If the continuation is small (i.e., just a ret), copying 
would be better



Code Generation for Branch with Arguments
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In compiling the conditional branch, need to know where the 
arguments for the label are stored. Keep track of this 
information in an environment you build up as you see sub-
block declarations.



Alternate Approach: "SSA Destruction"
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Used in most industry SSA 
compilers to squeeze out the best 
possible code generation:


more intermediate IRs =~ more 
opportunities for optimization



Should Conditional Branches be allowed to have arguments?

33



Should Conditional Branches be allowed to have arguments?
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unnecessary movs if the else branch is taken



Should Conditional Branches be allowed to have arguments?
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SSA-to-SSA transformation can eliminate

them



Join Points

36

Summary:


Join points are needed when different code paths share a common 
continuation.


Express sharing by duplicating a reference to the continuation, rather than the 
code for the continuation itself


SSA handles join points using either ϕ nodes or block arguments. Equivalent 
approaches but different ergonomics.




Extending the Snake Language

When we implement a compiler (to assembly) we need to 
address the following questions:


1. What is the syntax of the language we are compiling?


2. What is the semantics of the language we are compiling?


3. How can we implement that semantics in assembly code?


4. How should we adapt our intermediate representation to 
new features?


5. How can we generate assembly code from the IR?
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Snake v0.2: "Boa"
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Last time we added conditionals, but we only have integer 
operations so far. Let's add logical operators to write more 
interesting programs.



Snake v0.2: "Boa"
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Abstract Syntax
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Examples
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Semantics

42



Semantics
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Multiple approaches to handling datatypes:


1. Statically rule these out: integers and booleans are 
considered different and disjoint, reject programs like these


2. Statically insert coercions: integers and booleans are 
different but related, add coercions back and forth when mixed


3. Dynamically checks: integers and booleans are different and 
disjoint, error at runtime if we encounter these programs


4. Dynamic coercions: variables can be any type, insert 
coercions on all boolean operations 



x86 Instructions: setcc

44

 setcc loc


Actually a family of instructions, where cc is a condition code


Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.


0xXX XX XX XX XX XX XX XX

rax
eax

ax
ah al



x86 Instructions: setcc

45

 setcc loc


Actually a family of instructions, where cc is a condition code


Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.


mov rax, 0 
setge al 

sets rax to 1 if the condition code ge is set, otherwise 0



x86 Instructions: bitwise operators
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and dest, src


or dest, src


bitwise and, or. Not quite what we want for logical operations

mov rax, 0xF0 
mov rcx, 0x0F 
and rax, rcx 

 
rax is 0, not 1



Coercions and Representation
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Booleans


true is 1


false is 0


Integers


any 64-bit value


Integer to boolean: everything non-zero to 1, zero to 0


Boolean to integer: true to 1, false to 0



Implementing Coercions
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Can implement coercions as the assembly or SSA level


1. Assembly level: coerce inputs to booleans before all logical 
operations


2. SSA level: add a coercion intToBool to SSA that is 
implemented by the assembly coercion


advantage: can be removed by optimizations


advantage: simplifies code generation



Lowering to SSA
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true 1

false 0

x && y
b = intToBool(x) 
c = intToBool(y) 
res = b && c



SSA to x86
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x = intToBool(y)
mov rax, [rsp - off(y)] 
cmp rax, 0 
setne al 
mov [rsp - off(x)], rax



SSA to x86
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x = y & z
mov rax, [rsp - off(y)] 
mov r10, [rsp - off(z)] 
and rax, r10 
mov [rsp - off(x)], rax



Summary
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Implement a coercions from integers to booleans before performing the 
operation


a) Implement the coercion in the code generation phase from SSA to x86, 
insert it into each operation


b) SSA remains untyped, oblivious to our high-level type distinctions: all 
values are just 64-bits.


