
January 29, 2025

EECS 483: Compiler Construction
Lecture 5:
Conditionals 2

1

Conditionals and Continuations

We need to also account for the continuation of the if expression!

The continuation is what should happen after the result of the expression is
computed. Now that result might be computed in either branch.

So the continuation needs to be run after either branch

2

Compiling Conditionals by Copying Continuations

3

Compiling Conditionals by Copying Continuations

4

+

Compiling Conditionals by Copying Continuations

5

Compiling Conditionals by Copying Continuations

6

Strategy:

Make basic blocks for thn and els, giving them unique label names, compiling them
recursively

Compile cond, do a conditional branch on the result, using the label names
generated for thn and els

For continuations: copy them into both branches

For next time:

The strategy we've described today does create "correct" code.

Why is the strategy completely infeasible in practice?

Exponential Blowup in Copying Continuations

7

If we copy the continuation each time we perform
an if, how many times does the

 x * x

code appear in the generated ssa program?

Compiling Conditionals by Copying Continuations

8

Why is the strategy completely infeasible in practice?

Copying continuation: code size is exponential in the number of sequenced if-
expressions

Generated code should be usually be linear in the size of the input program

Most compiler passes should be linear in the size of the input program

certain program analyses are not linear, and dominate compilation time

Not Copying Continuations

9

Copying the continuation is infeasible because it causes an exponential blowup in code
size.

But it does produce functionally correct code because it correctly identifies that the two
branches share the same continuation. The best we can do with our version of SSA.

Need to add something to SSA to allow us to express that two pieces of code share the
same continuation.

Join Points

10

How would we write this manually in assembly code without copying?

Make a new block and jump to that same block at the end of each of the
branches. This "shares" the continuation without copying, using the fact that we
can copy the reference to the code, its label, for cheap.

Join Points

11

Join Points

12

How can we extend our IR to express join points?

Join points are just a new kind of block?

- Make a block for the join point

- Add a new uncdonditional branch, like an assembly jmp to our IR.

Join Points

13

Our ordinary blocks aren't enough: Join points aren't just code
blocks, they are continuations. We don't just need to execute

 x * x

We also need to assign to x differently depending on the branch

Solution 1: Assign to x in both branches

14

Pros: easy to generate assembly code

Con: breaks the "static single assignment property"

It's not clear in the join point where x is defined, makes
program analysis, optimization much harder

Solution 2: ϕ nodes

15

Solution 2: ϕ nodes

A ϕ node is a "ϕony" operation that allows SSA format to express join points
without breaking the SSA property.

x = ϕ(x1,x2,x3,...)

The semantics is a little strange...The ϕ node is an assignment to x, but which
variable it assigns depends on where we just branched from.

ϕ nodes require some syntactic restrictions:

they can only appear at the beginning of a basic block (so that we just branched).

need to make sure that the variables on the rhs are actually defined before they
reach the ϕ node.

need to pick some kind of ordering, so we actually know which variable
corresponds to which branch

Solution 2: ϕ nodes

A ϕ node is a "ϕony" operation that allows SSA format to express join points
without breaking the SSA property.

x = ϕ(x1,x2,x3,...)

Pros: maintains the SSA property, popular in SSA literature, used in long-
established industrial SSA-based compilers (LLVM, GCC, Hotspot)

Cons: strange semantics, strange code generation (the move happens in the
predecessor block!), difficult to enforce syntactic restrictions

Solution 3: Parameterized Blocks

18

Represent the continuation directly in the syntax: a
block can have parameters just like a continuation
has an input variable.

Directly allow us to turn continuations into blocks

19

Represent the continuation directly in the syntax: a
block can have parameters just like a continuation
has an input variable.

Directly allow us to turn continuations into blocks

Solution 3: Parameterized Blocks

20

Represent the continuation directly in the syntax: a
block can have parameters just like a continuation
has an input variable.

Directly allow us to turn continuations into blocks

Solution 3: Parameterized Blocks

ϕ Nodes vs Parameterized Blocks

A parameterized block adds "arguments" to our basic blocks

l(x1,x2,x3):

These arguments are like other variables, they are in scope for the block, but not outside of it.

Branching to a parameterized block means providing arguments to it

br l(y1,y2,y3)

Pros: maintains the SSA property, simple code generation, simple well-formedness condition,
used in newer SSA-based compilers (Swift, MLIR, MLton)

Cons: separates the different join points syntactically in the SSA program, need to translate
most SSA papers from phi node notation

ϕ Nodes vs Parameterized Blocks

ϕ nodes put assignment in the block itself, parameterized
blocks put the "asignment in the predecessor

Control Flow Graph

23

We can visualize SSA programs using control-flow graphs.

Nodes of CFG: basic blocks

edges are branches

entry
cbr y thn els

thn
x = 5
res = x * x
ret res

els
x = 6
res = x * x
ret res

Control Flow Graph

24

We can visualize SSA programs using control-flow graphs.

Join point: multiple predecessors

entry
cbr y thn els

thn
jn(5)

els
jn(6)

jn(x)
res = x * x
ret res

Control Flow Graph

25

Join points are needed to express sharing. Conditional code like our source
produces a DAG. DAGs can be simulated with trees, but with an exponential blowup!

entry
cbr y thn els

thn
jn(5)

els
jn(6)

jn(x)
res = x * x
ret res

entry
cbr y thn els

thn
x = 5
res = x * x
ret res

els
x = 6
res = x * x
ret res

Control Flow Graph

26

A common way to think about SSA programs is in terms of control-flow
graphs.

With branching, but no join points, we can express control-flow trees.

Join points allow us to express control-flow DAGs which can be exponentially
more compact than trees.

If we remove the acyclicity requirement, we can express loops and even more
exotic control flow. Revisit this next week

SSA Abstract Syntax

27

Well-formedness of SSA Programs

28

A benefit of sub-blocks and parameterized blocks is that we have a similar
notion of scope that we do in our Snake language.

Sub-blocks declare the names of blocks: those blocks should only be used
within the body of the sub-block declaration

Operations and Basic blocks declare the names of variables: those should only
be used within the body of the block after the declaration.

We can adapt our scope checker from the Snake language AST to the SSA
programs. Gives us a "linting" pass that can help us find bugs if we accidentally
made ill-formed SSA programs. If we implemented our compiler correctly, this
should always succeed, but can be helpful for debugging.

Compiling Conditionals by Copying Continuations

29

+

30

+

Compiling Conditionals by Generating Joins

If the continuation is small (i.e., just a ret), copying
would be better

Code Generation for Branch with Arguments

31

In compiling the conditional branch, need to know where the
arguments for the label are stored. Keep track of this
information in an environment you build up as you see sub-
block declarations.

Alternate Approach: "SSA Destruction"

32

Used in most industry SSA
compilers to squeeze out the best
possible code generation:

more intermediate IRs =~ more
opportunities for optimization

Should Conditional Branches be allowed to have arguments?

33

Should Conditional Branches be allowed to have arguments?

34

unnecessary movs if the else branch is taken

Should Conditional Branches be allowed to have arguments?

35

SSA-to-SSA transformation can eliminate

them

Join Points

36

Summary:

Join points are needed when different code paths share a common
continuation.

Express sharing by duplicating a reference to the continuation, rather than the
code for the continuation itself

SSA handles join points using either ϕ nodes or block arguments. Equivalent
approaches but different ergonomics.

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?
37

Snake v0.2: "Boa"

38

Last time we added conditionals, but we only have integer
operations so far. Let's add logical operators to write more
interesting programs.

Snake v0.2: "Boa"

39

Abstract Syntax

40

Examples

41

Semantics

42

Semantics

43

Multiple approaches to handling datatypes:

1. Statically rule these out: integers and booleans are
considered different and disjoint, reject programs like these

2. Statically insert coercions: integers and booleans are
different but related, add coercions back and forth when mixed

3. Dynamically checks: integers and booleans are different and
disjoint, error at runtime if we encounter these programs

4. Dynamic coercions: variables can be any type, insert
coercions on all boolean operations

x86 Instructions: setcc

44

 setcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.

0xXX XX XX XX XX XX XX XX

rax
eax

ax
ah al

x86 Instructions: setcc

45

 setcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets the lowest bit of loc to the result of the condition code 
 
Peculiarity: loc in this case needs to be a 1-byte register.

mov rax, 0
setge al

sets rax to 1 if the condition code ge is set, otherwise 0

x86 Instructions: bitwise operators

46

and dest, src

or dest, src

bitwise and, or. Not quite what we want for logical operations

mov rax, 0xF0
mov rcx, 0x0F
and rax, rcx

rax is 0, not 1

Coercions and Representation

47

Booleans

true is 1

false is 0

Integers

any 64-bit value

Integer to boolean: everything non-zero to 1, zero to 0

Boolean to integer: true to 1, false to 0

Implementing Coercions

48

Can implement coercions as the assembly or SSA level

1. Assembly level: coerce inputs to booleans before all logical
operations

2. SSA level: add a coercion intToBool to SSA that is
implemented by the assembly coercion

advantage: can be removed by optimizations

advantage: simplifies code generation

Lowering to SSA

49

true 1

false 0

x && y
b = intToBool(x)
c = intToBool(y)
res = b && c

SSA to x86

50

x = intToBool(y)
mov rax, [rsp - off(y)]
cmp rax, 0
setne al
mov [rsp - off(x)], rax

SSA to x86

51

x = y & z
mov rax, [rsp - off(y)]
mov r10, [rsp - off(z)]
and rax, r10
mov [rsp - off(x)], rax

Summary

52

Implement a coercions from integers to booleans before performing the
operation

a) Implement the coercion in the code generation phase from SSA to x86,
insert it into each operation

b) SSA remains untyped, oblivious to our high-level type distinctions: all
values are just 64-bits.

