
Month Day, 2025

EECS 483: Compiler Construction
Lecture XX:
Conditionals 1

1

Announcements

2

- Assignment 1 is due on Friday, the 31st.

- Next assignment to be released on Monday, February 3rd.

Questions from Last Lecture?

3

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

4

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?

5

Snake v0.2: "Boa"

6

In Adder we developed straightline code that performed
arithmetic operations and stored variables and intermediate
results in memory.

In Boa, we extend this to include conditional and looping
control flow.

Snake v0.2: "Boa"

7

In Adder we developed straightline code that performed
arithmetic operations and stored variables and intermediate
results in memory.

In Boa, we extend this to include conditional and looping
control flow.

Snake v0.2: "Boa"

8

Abstract Syntax

9

Examples, Semantics

10

We only have one datatype of integers, no separate booleans. We'll use C's
convention: 0 is false and everything else is true

Examples, Semantics

11

Again we have added if as an expression form (like Rust), so we need to handle
cases like

For this reason, if expressions always have an else branch

similar to C's ternary operator x ? 6 : 8

Examples, Semantics

12

We want to ensure that our if expressions only evaluate one of the two branches
at runtime, and not both.

How would you test that you did this correctly? What kinds of programs would
behave differently if you always evaluated both branches?

Scope

13

How should scoping extend to if expressions?

Should the following program be considered well scoped?

Control Flow in x86

14

x86 Instruction Semantics

15

So far, instructions execute in sequence. Why?

The instruction to execute is determined by a special register, the instruction
pointer "rip".

in our abstract machine, each execution step starts by interpreting the
memory at [rip] as a binary encoding of an assembly code instruction.

Most instructions (mov, add, etc) increment rip by the size of the encoded
instruction, meaning at the next step the instruction pointer will execute the
instruction after it in memory

What instruction have we seen so far that works differently?

x86 Instruction Semantics

16

So when we look at our code, we should
think of it that we are looking at that code
laid out in memory.

Assembly code labels give names to
memory addresses.

x86 Instructions: jmp

17

 jmp loc

Semantics: sets the instruction pointer to loc.

Often loc is a label for another instruction in the same assembly file, but it
doesn't have to be, it can be a register, or a memory location, or even a
constant (almost certainly will crash in that case)

x86 Instructions: jcc

18

 jcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets rip to loc if the condition code is satisfied, otherwise
increment rip like a sequential instruction.

x86 RFLAGS

19

The x86 abstract machine includes a register rflags, which like rip is
manipulated as a side-effect of many instructions.

rflags is a 64-bit register, each bit acting as a boolean flag. Most of these are
irrelevant to our compiler (or unused). The most relevant to us are

- OF "overflow flag": 1 if an overflow occurs, otherwise 0

- SF "sign flag": 1 if the output is negative, otherwise 0

- ZF "zero flag": 1 if the output is zero, otherwise 0

x86 RFLAGS

20

The x86 abstract machine includes a register rflags, which like rip is
manipulated as a side-effect of many instructions.

mov does not affect flags

add, sub, imul, other arithmetic expressions do:

mov rax, 15
mov rcx, 17
sub rax, rcx

OF: 0
SF: 1
ZF: 0

rax: -2
rcx: 17

x86 Instruction: cmp

21

Often we want to set rflags, but not actually store an arithmetic result:

cmp arg1, arg2

"compare instruction". Behaves like sub for the purposes of setting flags, but
does not update arg1

mov rax, 15
mov rcx, 17
cmp rax, rcx

OF: 0
SF: 1
ZF: 0

rax: 15
rcx: 17

x86 Instruction: test

22

Often we want to set rflags, but not actually store an arithmetic result:

test arg1, arg2

"test instruction". Behaves like a bitwise and for the purposes of setting flags,
but does not update arg1. Useful for checking certain bits are set

x86 Condition codes

23

Condition codes interpret the flags as a boolean formula. Mnemonic makes the
most sense if we have just run a sub or cmp operation

- e (equal): ZF

- ne (not equal): ~ ZF

- l (less than): OF ^ SF

- le (lesser or equal): (OF ^ SF) | ZF

- g (greater than): ~ le = ~ ((OF ^ SF) | ZF)

- ge (greater or equal): ~ l = ~ (OF ^ SF)

x86 Instructions: jcc

24

 jcc loc

Actually a family of instructions, where cc is a condition code

Semantics: sets rip to loc if the condition code is satisfied, otherwise
increment rip like a sequential instruction.

je loc

jle loc

jg loc

...

x86 Conditional Control Flow: Example

25

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How should we adapt our intermediate representation to
new features?

5. How can we generate assembly code from the IR?

26

SSA

Previously:

one single block of operations ending in a return

compiled to a block of sequential assembly labeled entry, ending in a ret

Extend as follows:

add ability to define additional labeled blocks called basic blocks

add ability to end a block by branching rather than returning

27

SSA Abstract Syntax

28

SSA Concrete Syntax

29

Compiling Basic Blocks to x86

For each basic block, we will emit a block of assembly code with a label
corresponding to the name of the block.

Need to ensure that the sub-blocks are emitted after the instructions for the
current block.

Conditional branches can be encoded using a mix of x86 conditional jumps and
unconditional jumps

30

31

Compiling Basic Blocks to x86

Compiling Conditionals to (Sub-)blocks

32

Conditionals and Continuations

Strategy:

Make basic blocks for thn and els, giving them unique label names, compiling
them recursively

Compile cond, do a conditional branch on the result, using the label names
generated for thn and els

33

Compiling Conditionals to (Sub-)blocks

34

Conditionals and Continuations

We need to also account for the continuation of the if expression!

The continuation is what should happen after the result of the expression is
computed. Now that result might be computed in either branch.

So the continuation needs to be run after either branch

35

This works if the result of the if expression is to be returned, but what if it's more
complex:

Compiling Conditionals by Copying Continuations

36

Compiling Conditionals by Copying Continuations

37

+

Compiling Conditionals by Copying Continuations

38

Compiling Conditionals by Copying Continuations

39

Strategy:

Make basic blocks for thn and els, giving them unique label names, compiling them
recursively

Compile cond, do a conditional branch on the result, using the label names
generated for thn and els

For continuations: copy them into both branches

For next time:

The strategy we've described today does create "correct" code.

Why is the strategy completely infeasible in practice?

