
January 21, 2025

EECS 483: Compiler Construction
Lecture 3:
Complex Expressions, Evaluation Order, Basic Blocks

1

Announcements

2

- Yuchen will be holding office hours 3-4:30pm on Thursday the 23rd in
Beyster Atrium in place of Max.

- Assignment 1 is due next Friday, the 31st.

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

3

Snake v0.1: "Adder"

4

Today: Finish Adder by adding binary arithmetic operations

Snake v0.1: "Adder"

5

Abstract Syntax

6

no constructor for parentheses

Precedence

7

Parser uses precedence rules (PEMDAS) to produce an AST

both parse into the same AST:

Semantics

8

In an expression e1 op e2, do we evaluate e1 and then e2 or
vice-versa?

Does it make a difference in Adder?

Does it make a difference in realistic extensions of Adder?

Compiling Binary Operations

9

Why is compiling binary operations more complex than unary?

Compiling Binary Operations

10

Why is compiling binary operations more complex than unary?

Recall: current strategy is to store intermediate results in rax

Compiling Binary Operations

11

compound expressions have implicit intermediate results

solution: translate to a form where these intermediate results are explicit, and
operations are only ever applied to immediate expressions (constants/variables)

Intermediate Representation

12

We add a new pass lowering our AST into an intermediate representation.

An intermediate representation is a language used internally in the compiler.

Typically, humans don't write programs in the intermediate representation directly,
only generated by compiler passes.

Intermediate representation should be "closer" to the target language (x86) than
the source program ASTs. I.e., the translation from intermediate representation to
x86 should be relatively simple.

Static Single Assignment v1: Basic Blocks

13

The intermediate representation we use in this course is called Static Single
Assignment (SSA).

For Adder, we only need a fragment of SSA: we will compile the source to a single
basic block.

Static Single Assignment v1: Basic Blocks

14

Live code: AST for SSA

Static Single Assignment v1: Basic Blocks

15

Summary:

1. An SSA program consists of an entry point, a parameter and a block

2. A block is a sequence of primitive operations performed on immediately
available values (variables or numbers) ending in a return statement.

3. Variables in SSA are immutable, just like our source language.

4. All bound variables in SSA should be globally unique.

Static Single Assignment v1: Basic Blocks

16

SSA programs aren't written by humans so they don't need a "concrete syntax"

but to make debugging easier, we will print SSA programs in the style shown below:

Static Single Assignment v1: Basic Blocks

17

Now we've reduced the compilation to two tasks:

1. "Lowering" our AST into an SSA program

2. Producing x86 assembly from an SSA program

SSA to x86

18

Since SSA is essentially a simplified version of Adder, we can apply the same
techniques for generating assembly code from SSA. The only extension is that we
need to handle binary primitives.

SSA to x86

19

Adder to SSA

20

Live Code

Adder to SSA

21

Summary:

Translate Adder to SSA using continuation-passing style: expression lowering
function is parameterized by a continuation consisting of

1. the name of the destination variable for the result.

2. a block of code to run after the compiled code places the result in the
destination.

Need to generate unique names in this process to make sure that the generated
variable names are all distinct and distinct from the original program variables

