
January 15, 2025

EECS 483: Compiler Construction
Lecture 2:
Variables, Scope and Memory

1

Announcements

2

- First homework assignment will be released tonight.

Some material will be covered in next week's class, but can get
started on parts of it after today's lecture

This week's discussion will go over the infrastructure in the starter
code.

- Max is out of town next week for a conference (POPL), lecture on the
22nd will be posted on Canvas.

- Yuchen will be holding office hours 3-4:30pm on Thursday the 23rd
in Beyster Atrium in place of Max.

Extending the Snake Language

When we implement a compiler (to assembly) we need to
address the following questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code
programmatically?

3

Snake v0.1: "Adder"

4

Today: add immutable variables to Adder, to allow saving
results of intermediate computations

Snake v0.1: "Adder"

5

Examples

6

Examples

7

Let is an expression form, just like add1 and sub1

Examples

8

Let is an expression form, just like add1 and sub1

Expressions vs Statements

9

In most languages in the C style, variable bindings belong to a separate
syntactic class of statements.

In languages with a functional programming style, it is more common to allow
most syntactic constructs.

Rust is somewhere in the middle

Example?

10

Does this example match our grammar?

Should it be considered a valid program?

Compiler Frontends

11

Even after parsing, there are some conditions on the syntax that still remain to
be checked. This is inherent: to be implemented efficiently, parsers use
computationally restrictive languages that are not capable of performing all of
the semantic analysis necessary to check if the input program is valid

Compiler Frontend

Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

input

string

validated

AST

Semantic Analysis

12

Examples:

- Scope checking (today)

- Type checking

- Borrow checking

EECS 490 covers type checking in more detail.

Free and Bound Variables

13

We say this program is invalid because the y is a free variable, meaning it has
not been defined

14

The usage of x here is valid because it occurs within the scope of a binding site
that binds the variable name x. We call such a usage a bound variable

binding site

bound variable

Free and Bound Variables

Free and Bound variables

15

There are 8 variables in this program. Which ones are binding sites, which ones
are free variables and which ones are bound variables?

Live Code: Scope Checking

16

To define scope rigorously, let's define a scope checker in Rust.

Variable Names are Tricky

17

We use variable names as a way to refer back to binding sites. But because
names are implemented as strings, sometimes the same name is used to refer
to multiple binding sites.

Variable Names are Tricky

18

We use variable names as a way to refer back to binding sites. But because
names are implemented as strings, sometimes the same name is used to refer
to multiple binding sites.

Shadowing

19

Should this be allowed?

Shadowing

20

Should this be allowed?

We say the second binding shadows the first

If a binding is shadowed, it's impossible to refer to it in the source program!

Live Code: Interpreter

21

Now let's define the semantics of our language rigorously by defining an
interpreter in Rust.

Beta Reduction

22

A common rewrite we can apply to our ASTs is called beta reduction

rewrites to

with all occurrences of x replaced by e1

Beta Reduction

23

rewrites to

Beta Reduction

24

rewrites to

with all occurrences of x replaced by e1

Is there any situation where this rewrite is not correct? I.e., where the two
different expressions have different behaviors?

Beta Reduction

25

Is there any situation where this rewrite is not correct? I.e., where the two
different expressions have different behaviors?

we say that the inner binding of y has captured the occurrence of y on the
inside

Unique Variable names

26

Shadowing is convenient for programmers, but ultimately harmful to compilers.
For this reason compilers typically implement a variable renaming phase that
makes sure that all binding occurrences are globally unique

Ensuring that all variables are unique ensures we can move code around
without worrying about capture.

Compiling Let

27

In the interpreter, the value of each variable was stored in a HashMap.

In the compiled code, we correspondingly need to ensure that we have access
to the value of each variable somewhere in memory

x86 Memory Model

28

16 general-purpose 64-bit registers

- rax, rcx, rdx, rbx, rdi, rsi, rsp, rbp, r8-r15

Each holds a 64-bit value, so 128 bytes of extremely fast memory.

The abstract machine also gives us access to a large amount of memory, which
is addressable by byte.

- Addresses are 64-bit values, though in current hardware only the lower 48-bits
are used. This gives us access to 2^48 bytes of address space, or 128
terabytes.

x86 Instructions: mov

29

 mov dest, src

In a mov, the dest and src can be registers or memory addresses.

Use square brackets [] to "dereference" an address.

• mov rax, rdi copies the value stored in rdi to rax

• mov rax, [rdi] loads the memory at address rdi into rax

• mov [rax], rdi stores the value of rdi in the memory at address rax

• mov [rax], [rdi] - not allowed in x86 syntax

x86 Instructions: mov

30

 mov dest, src

In a mov, the dest and src can be registers or memory addresses.

Addresses can be not just registers, but offsets from registers

 mov rax, [rsp - 8 * 3]

x86 Memory Conventions

31

Registers give us access to 128 bytes, and byte-addressable memory gives us
access to 128 terabytes.

But that memory needs to be shared by different components of the process
(functions, objects, allocator, garbage collector, etc).

We can't just start writing to a random portion of memory

1. That memory might be used by another component, like our caller, and we
would break the invariants of that component

2. Hardware supports mechanisms for process isolation, so most of the memory
space will be invalid for us to access, causing the dreaded segmentation fault

x86 Memory Conventions

32

Memory in x86 processes is divided
into 4 portions

1. Read-only memory containing the
source code. (.text section)

2. Globals

3. Heap

4. The call Stack 
 

x86 Memory Conventions

33

We access the stack using the "stack
pointer" rsp.

The calling convention dictates that
when a function is called, the stack
pointer

1. Points to the return address of the
caller

2. Lower memory addresses are free for
the callee to use

3. Higher memory addresses are owned
by the caller

rsp Return Address

Free/Callee

Used/Caller

Stack

x86 Memory Conventions

34

rsp

x: 14

b: 13

a: 7

Return Address

Free/Callee

Used/Caller

Stack

let a = 7 in
let b = 13 in
let x = add1(a) in
add1(x)

We use the free space on the stack to
store our local variables

rsp - 8 * 3
rsp - 8 * 2
rsp - 8 * 1

Compiling Let

35

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

36

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

37

To compile our code, we need to establish a mapping of variable names to
memory locations

Compiling Let

38

To compile our code, we need to establish a mapping of variable names to
memory locations

Wasteful?
When a variable goes out of scope, its value is no longer needed

Compiling Let

39

Only need to ensure that the memory locations are unique relative to the other
variables that are currently in scope

How can you implement this in code? Again: designing the right kind of
environment is the key

Compiling Let

