
EECS 483 Midterm March 12, 2024

SOLUTIONS
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1. Language Semantics and Correctness (16 points)

Appendix A contains a description of an arithmetic expression language with integers, addition, multipli-
cation and division, and code for an interpreter.

(a) (4 points) Which of the following rewrites are correct with respect to the language semantics given
by interpret_exp? If the rewrite is incorrect, provide a concrete counter-example: a specific
expression e for which interpret_exp has a different result when evaluated on the left and right
expressions.

i. rewrite Add(e, e) to Mul(Lit 2, e)

Answer: Correct

ii. rewrite Mul(e, Lit 0) to Lit 0

Answer: Correct

iii. rewrite Mul(e1, e2) to Mul(e2, e1)

Answer: Correct

(b) (4 points) Redo your analysis from part 1 but for a version of interpret_exp where the call to
divide_v1 is replaced by a call to divide_v2. If counter-example works as before, simply say so,
no need to rewrite it.

i. rewrite Add(e, e) to Mul(Lit 2, e)

Answer: Correct

ii. rewrite Mul(e, Lit 0) to Lit 0

Answer: Incorrect, For e: Div(1, 0) the left will error and the right will not

iii. rewrite Mul(e1, e2) to Mul(e2, e1)

Answer: Correct

(c) (4 points) Redo your analysis again but using divide_v3.

i. rewrite Add(e, e) to Mul(Lit 2, e)

Answer: Correct

ii. rewrite Mul(e, Lit 0) to Lit 0

Answer: Incorrect. For e: Div(1, 0) the left will error and the right will not

iii. rewrite Mul(e1, e2) to Mul(e2, e1)

Answer: Incorrect. For e1: Div(1, 0), e2: Div(2, 0), the left will error with
DividedByZeroV3(1) but the right will error with DividedByZeroV3(2)

(d) (4 points) Redo your analysis again but using divide_v4.
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i. rewrite Add(e, e) to Mul(Lit 2, e)

Answer: Incorrect. For e: Div(1, 0), the left will print 11, but the right will print 1

ii. rewrite Mul(e, Lit 0) to Lit 0

Answer: Incorrect. For e: Div(1, 0), the left will print 1, but the right will print nothing

iii. rewrite Mul(e1, e2) to Mul(e2, e1)

Answer: Incorrect. e1: Div(1, 0), e2: Div(2, 0), the left will print 12 but the right will
print 21
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2. Calling Conventions and Assembly Code(16 points)

Appendix B contains a description of an unusual calling convention, the CBPV calling convention. For
simplicity, we describe a version for functions of two arguments.

(a) (2 points) Do the CBPV and AMD64 calling conventions use caller cleanup of arguments or callee
cleanup? (Choose one)
2 Both use caller cleanup ⊠ AMD64 uses caller cleanup, CBPV uses callee cleanup
2 Both use callee cleanup 2 AMD64 uses callee cleanup, CBPV uses caller cleanup

(b) (6 points) Give x86 assembly code for a function using the CBPV calling convention that returns the
sum of its two arguments.
Answer:

popq %rax
add %rsi , %rax
ret

(c) (8 points) Give x86 assembly code that implements a call x = f(1,2) using the CBPV calling
convention where the result is stored x is stored in rax. Assume the function you are calling from
uses rbp and rsp to manage the stack frame as specified in HW3. Assume that the current values of
all the registers except rax will be needed after the call. For full credit, use as little stack space as
possible.
Answer:

pushq %rsi
pushq %r8
...
pushq %r14
mov $1, %rsi
leaq lbl(%rip), %rax
pushq %rax
pushq $2
jmp f

lbl:
popq %r14
...
popq %r8
popq %rsi
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3. LLVM (20 points)

(a) (2 points) 2 True or ⊠ False: To correctly compile LLVM IR to assembly code, all LLVM
temporaries must be stored on the stack.

Explanation: For many functions, all temporaries can be stored in registers.

(b) (4 points) The terminators in LLVMlite are direct br, conditional br, and return ret. All of these
transfer control flow somewhere besides the next instruction. A function call, e.g., call i64
@fac(i64 %2) also transfers control flow. Why isn’t a function call a terminator?

Answer: A function call is not a terminator because while control flow transfers to the callee, if
the callee ever returns, control flow will resume at this point.

(c) A control-flow graph (CFG) is a directed acyclic graph (DAG) if it has no cycles, and is a tree if it is
a DAG and additionally every node except the start node has exactly one predecessor.

• (4 points) Not every function in LLVM be can implemented using a CFG that is a DAG. Give
an example of a CFG that is not a DAG for which there is no DAG that implements the same
behavior.

Answer: Any infinite or dynamically bounded loop

• (4 points) Can every CFG that is a DAG be implemented by a CFG that is a tree? Why or why
not?

Answer: Yes, because every node with multiple predecessors can be duplicated to make the
DAG into a tree. However this will cause an exponential blowup in the size of the CFG in
general so DAGs are still useful even without loops.

(d) (6 points) Appendix C contains a simple C function containing a switch statement. Hand-compile
this to an LLVM function.
Answer:
define i64 @f(i64 %n) {

%res1 = icmp eq i64 %n, 0
br i1 %res1 , label %blk_case0 , label %blk_caseNot0

blk_case0:
%tmp1 = call i64 @g(i64 0)
br label %blk_end

blk_caseNot0:
%res2 = icmp eq i64 %n, 1
br i1 %res2 , label %blk_case1 , label %blk_caseDef

blk_case1:
%tmp2 = call i64 @g(i64 1)
br label %blk_caseDef

blk_caseDef:
%tmp3 = call i64 @g(i64 2)
ret i64 -1

blk_end:
ret i64 0

}
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4. Regular Expressions, Finite Automata and Lexing (20 points)

(a) (2 points) 2 True or ⊠ False: An OCamllex program always outputs a sequence of tokens.

Explanation: OCamllex programs generate code that matches regular expressions, but the right
hand side of the match is a “semantic action” which can be arbitrary OCaml code which is not
required to output a sequence of tokens.

(b) (2 points) For an NFA with N states, what is the tightest bound we can give in general on the number
of states in the corresponding minimal DFA?
bound? Answer: The NFA to DFA construction makes a DFA with O(2n) states. Smaller DFAs

may exist, but this is the tightest bound we can give in general

(c) Let L be the set of strings over the alphabet {x, y, z} where there is at least one y between any two
xs.

i. (4 points) Define a regular expression that matches precisely the strings in L.

Answer: There are many equivalent answers. Here is one:

(y|z)∗(xz∗y(y|z)∗)∗(ε|x(y|z)∗)

or using ? notation
(y|z)∗(xz∗y(y|z)∗)∗(x(y|z)∗)?

The English reading of this regex is that to generate a string in L, first generate some number of
y, zs, then generate some number of xs that are followed by a mix of y, z that contains at least
one y, and finally, optionally include a final x that is followed by final mix of y, zs.

ii. (4 points) Define a DFA that accepts precisely the strings in L. Be sure to clearly mark which
is the start node and which nodes are accepting.
Answer:

0 1 2

y|z
x

x

y

z x|y|z

(d) Again we use the alphabet {x, y, z}. Consider the following NFA. We have labeled state 0 as the
start state and marked accepting states 1, 3, 6 by double circles.

0 4 5 6

1 2 3

ε

ε x z

x
y z

• (4 points) Define a regular expression that matches the same language as that accepted by the
NFA.

Answer:
(xz)|(x∗(yz|ε))
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• (4 points) Define a DFA that accepts the same strings as the NFA. For full credit, define the
minimal DFA.
Answer: Here we label the states by the subset of states in the NFA that they correspond to.

{1, 5}

{0, 1, 4} {1} {3, 6}

{2}

y

z

x

x

y

y

x

z
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5. Parsing (20 points)

(a) (2 points) ⊠ True or 2 False: All LL(1) grammars are unambiguous.

(b) (2 points) 2 True or ⊠ False: For an unambigious grammar, every parse tree has a unique
derivation.

(c) (2 points) LR(1) parsers are a ⊠ bottom-up or 2 top-down parsing method?

(d) Consider the grammar in Appendix D

• (4 points) Show that the grammar is ambiguous by drawing two different parse trees for the
same string. Two parses for “true or true or true”

•

•

true or true or true

•

•

true or true or true

• (4 points) In a typical programming language, what should the relative precedence relationship
be between the binary operators and, or and the ternary operator if_then_else_ .

and has higher precedence than or which has higher precedence than if_then_else

• (6 points) Define an LL(1) grammar that accepts the same strings as the original grammar in
Appendix D, and with the precedence relationship you just described. Partial credit will be
awarded for grammars that fit some but not all of the requirements of LL(1).

B0 −→ if B0 then B0 else B0

| B1

B1 −→ B2 B′
1

B′
1 −→ or B1

| ε
B2 −→ B3 B′

2

B′
2 −→ and B2

| ε
B3 −→ true

| false
| ( B0 )
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EECS 483 Winter 2024 Midterm Appendices
(Do not write answers in the appendices. They will not be graded)

Appendix A: Interpreter Code

1 type exp =
2 | Lit of int
3 | Mul of exp * exp
4 | Add of exp * exp
5 | Div of exp * exp
6

7 exception DividedByZeroV2
8 exception DividedByZeroV3 of int
9

10 let divide_v1 (m : int) (n : int) : int =
11 if n = 0
12 then 0
13 else m / n (* / i n OCaml i s i n t e g e r d i v i s i o n * )
14

15 let divide_v2 (m : int) (n : int) : int =
16 if n = 0
17 then raise DividedByZeroV2
18 else m / n
19

20 let divide_v3 (m : int) (n : int) : int =
21 if n = 0
22 then raise (DividedByZeroV3 m)
23 else m / n
24

25 let divide_v4 (m : int) (n : int) : int =
26 if n = 0
27 then (print_int(m); 0) (* p r i n t _ i n t p r i n t s t h e i n p u t number t o s t d o u t * )
28 else m / n
29

30 let rec interpret_exp (e:exp) : int =
31 begin match e with
32 | Lit i -> i
33 | Add(e1, e2) -> (interpret_exp e1) + (interpret_exp e2)
34 | Mul(e1, e2) -> (interpret_exp e1) * (interpret_exp e2)
35 | Div(e1, e2) -> divide_v1 (interpret_exp e1) (interpret_exp e2)
36 end
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Appendix B: CBPV Calling Convention

The CBPV calling convention for functions of two arguments works as follows:

1. All CBPV functions take two 64-bit arguments.

2. The first argument goes in rsi

3. The second argument is stored at [%rsp] and the return address is stored at [%rsp + 8].

4. To return,

(a) The return value should be in rax

(b) The stack pointer rsp should be set to 16 more than its original value on entry to the function.

(c) The instruction pointer rip should be set to the return address.

5. Registers rsi, rax, rsp and r8-14 are caller-save and the remainder are callee-save.

Appendix C: Compiling Switch Statements

Assume in the following that g is of type void g(int n).

int f(int n) {
switch (n) {
case 0:

g(0);
break;

case 1:
g(1);

default:
g(2)
return -1;

}
return 0;

}

Appendix D: Grammar for Boolean Expressions

For clarity, terminal symbols are surrounded with a box .

B −→ if B then B else B

| B and B
| B or B

| true

| false

| ( B )
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