
CIS 341 Midterm 3 March 2022

Name (printed):

Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

Signature: Date:

1 /18

2 /16

3 /20

4 /16

5 /20

Total /90

• Do not begin the exam until you are told to do so.

• You have 90 minutes to complete the exam.

• There are 90 total points.

• There are 8 pages in this exam and a separate 4 page appendix.

• Make sure your name and Pennkey (a.k.a. Eniac username, e.g. stevez) is on the top of this
page and the bottom of every page.

• Be sure to allow enough time for all the problems—skim the entire exam first to get a sense of
what there is to do.

1

1. Interpreters and Language Semantics (18 points)

Appendix A contains the complete code for a variant of one of the SIMPLE imperative language inter-
preters we explored in class. This version includes a new “for-loop” construct. The new abstract syntax
(on line 15) is For(x, e, c), which is intended to have a semantics like the following c program:

for(x=0; x != e; x=x+1) {
c;

}

Here, x is a variable, e is an expression, and c is the body of the loop. (Unlike more fully-featured for-
loops, this version only allows for x to be incremented by 1 and requires the loop guard to test inequality
with respect to the expression e.)

(a) (4 points) The OCaml definition factorial_for gives the abstract syntax tree for a SIMPLE pro-
gram that uses a for loop. Translate it into c (-like) concrete syntax. (Since all of the types are
integers, there is no need to mention type information.)

(b) (4 points) Consider the program For("x", Imm 5, c). Does the semantics of For loops given by
interp_cmd ensure that the command c will be executed exactly 5 times? Why or why not?

PennKey: 2

(c) (6 points) The interp_cmd function in Appendix A uses OCaml meta-level constructs to implement
the loop semantics (see lines 49–59). An alternative is to “desugar” the For abstract syntax node
into an equivalent command that does not mention For and then interpret that (as is done to handle
WhileNZ on line 47). What code would replace lines 50–59 to desugar For(x, e, c)?

49 | For(x, e, c) ->

(d) (4 points) Suppose that instead of interpreting this language, we were compiling it to LLVM IR.
The parser could desugar For immediately, so that we do not even need to include it as part of the
abstract syntax. Describe one reason why the compiler might not want to do that.

PennKey: 3

2. X86 and Calling Conventions (16 points)

The following code computes the trace (i.e., the sum of the diagonal entries) of a square matrix, in C (left),
and X86 assembly (right). (Recall that the c type long is a 64-bit integer value.)

long trace(unsigned long n,
long m[n][n]) {

long i;
long result = 0;
for (i = 0; i < n; i++) {

result += m[i][i];
}
return result;

}

trace:
movq $0, %rax
movq $0, %rdx
movq %rsi , %rcx
movq %rdi , %r10
imulq $8, %r10
addq $8, %r10

loop:
cmpq %rdi , %rdx
jl body
retq

body:
addq (%rcx), %rax
addq $1, %rdx
addq %r10 , %rcx
jmp loop

(a) The parameter n is passed to trace in the following location (choose one)
2 -16(%rbp) 2 %rdi 2 %rsi 2 %rax

(b) 2 True or 2 False: The contents of the matrix m are laid out contiguously in memory

(c) The value of i is stored in the following location (choose one)
2 -16(%rbp) 2 %rax 2 %rdx 2 %r10

(d) Suppose that we call trace with n=3. When trace exits, the value stored in rcx is equal to which
c-language expression? (choose one)
2 2 2 ((long*)m + 12) 2 m[2][2] 2 ((long*)m + 96)

(e) 2 True or 2 False: According to the cdecl standard, %rbp is a callee-save register.

(f) 2 True or 2 False: X86 code is structured as basic blocks, with labeled entry points, straight-line
code, and terminator instructions.

(g) (4 points) Write a sequence of X86lite instructions that has the same effect as pushq %rcx without
using pushq:

PennKey: 4

3. LLVM IR (20 points)

Consider the following C code (left), and corresponding LLVMlite (right):

struct C { int64_t x; int64_t y; };
struct A { int64_t head [10];

struct C c;
int64_t foot [10]; };

%C = { i64 , i64 }
%A = { [10 x i64],

%C,
[10 x i64] }

(a) (2 points) How many bytes does an LLVM value of type [5 x %C*] occupy?

(b) (2 points) How many bytes does an LLVM value of type [5 x %A] occupy?

(c) (10 points) Consider the following c statement (where a is of type A*):
int64_t x = (*a).foot [3] + (*a).c.y;

Suppose that %a is the LLVM uid of type %A* corresponding to the value stored in a. Fill in the blanks
of the following LLVM IR snippet so that it corresponds to the c statement above. (The comments
indicate the what sort of missing information should be filled in.)

%x = alloca ___________ ; LLVM t y p e

%tmp1 = getelementptr %A* %a, __ ; GEP pa th

%val1 = load i64 , _____________________ ; LLVM t y p e and u i d

%tmp2 = getelementptr %A* %a, __ ; GEP pa th

%val2 = load i64 , _____________________ ; LLVM t y p e and u i d

%val3 = ____________ i64 %val1 , %val2 ; LLVM binop i n s t r u c t i o n

store i64 %val3 , ____________ %x ; LLVM t y p e

(d) (4 points) In your LLVMlite-to-x86lite code generator, the stack layout assigns each uid a stack slot
that is referenced by a constant (negative) offset from rbp. Could you instead reference stack slots
by a constant (positive) offset from rsp? Why or why not?

(e) (2 points) In a LLVM control flow graph with N vertices, what is the maximum number of edges?

PennKey: 5

4. Lexing (16 points)

Appendix B has the ocamllex code for a simple lexer program based on the ones we have seen in class.

(a) (2 points each) For each of the following input strings provided on stdin, what output sequence
would be printed by the lexer? If the lexer generates an error anywhere during its operation, write
“Char X is unexpected.” where X is the illegal character. (Unlike the real program, which prints one
token per line, you can put the output on one line.) We have done the first one for you.

i. "012 x"
Output: Int 12 Ident x

ii. "if0x"
Output:

iii. "0ifx"
Output:

iv. "if 001(*"
Output:

v. "(**"
Output:

(b) (4 points) Suppose that you wanted to modify the lexer so that identifiers can (but do not have to)
start with an underscore. Which line (or lines) of the lexer code would you modify and what change
would you make?

(c) (4 points) Is it possible for the DFA corresponding to an NFA to have fewer states? If so, give an
example. If not, briefly explain why.

PennKey: 6

5. Parsing (20 points)

(a) (3 points) Is it possible to construct a context free grammar that accepts exactly the set of well-formed
LLVM IR programs? Why or why not?

Consider the following context free grammar with terminals {x, y, z, $} and non-terminals S0, S and T .
S is the starting nonterminal and $ is the end-of-input marker.

S0 �! S$
S �! xST
S �! ✏
T �! yT
T �! yz

(b) (3 points) Which of the following strings are accepted by this grammar? (Mark all such strings)
2 ✏ 2 xyz 2 xzy 2 xyzyz 2 xxyzyz

(c) (3 points) Is this grammar LL(1)? Why or why not?

(d) (2 points) What is Follow(S), the follow set of nonterminal S, for this grammar?

Follow(S) =

PennKey: 7

For your reference, here is the same grammar again:

S0 �! S$
S �! xST
S �! ✏
T �! yT
T �! yz

(e) (6 points) Complete the DFA for the state space corresponding to the LR(0) parser for this grammar.
Each state is numbered and consists of a set of LR(0) items. State 0 is the start state. You need to
fill in the items for state 4 and the missing labels for the three edges originating at state 6 . Hint:
the items in state 4 do not indicate any reduce actions.

(
S0 �! ·S$
S �! ·xST
S �! ·

)0

{ S0 �! S · $ }
1

{ S0 �! S$· }
2

(
S �! x · ST
S �! ·
S �! ·xST

)3

8
>>><

>>>:

9
>>>=

>>>;

4

{ S �! xST · }
5

8
><

>:

T �! y · T
T �! y · z
T �! ·yT
T �! ·yz

9
>=

>;

6

{ T �! yT · }
7

{ T �! yz· }
8

S

S T

x

$

y

x

(b) (3 points) This grammar is not LR(0) but it is SLR(1). Briefly explain why.

PennKey: 8

