
CIS 341 Midterm 27 February 2020

SOLUTIONS

1

1. Compiler Structure (4 points)

a. Which stage of a C compiler is responsible for generating an error message like:
“expected an expression”
2 Lexer � Parser 2 Static Analyzer 2 Code Generator 2 Assembler

b. Which stage of a C compiler is responsible for generating an error message like:
“error: use of undeclared identifier ’z”’
2 Lexer 2 Parser � Static Analyzer 2 Code Generator 2 Assembler

c. In which stage of a C compiler would regular expressions be most useful for the language imple-
mentor?
� Lexer 2 Parser 2 Static Analyzer 2 Code Generator 2 Assembler

d. Which stage of a C compiler is in charge of implementing the platform’s calling conventions?
2 Lexer 2 Parser 2 Static Analyzer � Code Generator 2 Assembler

2

2. Interpreters and Language Semantics (20 points)

We saw in the first homework how it is easy to implement an interpreter for a simple language of arith-
metic expressions. Here we explore the ramifications of including“impure expressions,” as are found in
languages like C.

For example, in C you can write a function foo:
int foo() {

int x = 0;
int ans = x + (x = 1);
return ans;

}

Here, the expression x + (x = 1) contains an assignment to x. In general, the meaning of an assignment
expression x = exp is to compute the result r of evaluating exp, assign r to the variable x and yield r as
the result of the whole assignment expression.

This is a significant change to the semantics of expressions, because it makes the order of evaluation
observable: the result of exp1 + exp2 might depend on whether we evaluate exp1 or exp2 first. (C leaves
this choice unspecified—the evaluation order is up to the compiler implementor, and might vary from one
implementation to the next!1)

a. (1 point) What answer does foo() return if exp1 + exp2 evaluates exp1 before exp2? 1.

b. (1 point) What answer does foo() return if exp1 + exp2 evaluates exp2 before exp1? 2.

c. (8 points) We can model this situation by extending the interpreter from the Hellocaml project. Ap-
pendix A has the code for an expression datatype that includes a new constructor VarAssn. Complete the
interpreter below so that expressions are evaluated left-to-right and the result is the value of the expression
paired with the updated state.
let rec interpret_exp (s:state) (e:exp) : (int * state) =

begin match e with
| Var x -> (lookup s x, s)
| Add(e1, e2) ->

let (l, s1) = interpret_exp s e1 in
let (r, s2) = interpret_exp s1 e2 in
(l + r, s2)

| Mul(e1, e2) ->
let (l, s1) = interpret_exp s e1 in
let (r, s2) = interpret_exp s1 e2 in
(l * r, s2)

| Lit i -> (i, s)
| VarAssn(x, e) ->

let (r, s1) = interpret_exp s e in
(r, update s1 x r)

end

1To be fair, most modern C implementations issue a warning if you use these features.

3

d. (6 points) This change to the meaning of expressions also affects which optimizations and code trans-
formations are correct (i.e. do not change the meaning of the program). For example, transforming the
expression x + (x = 1) to (x = 1) + x is not correct (so plus is not commutative).

Consider the following optimizer based on that from the homework. For each indicated case of the code,
mark the box to say whether that line is OK (i.e. is a correct transformation) or BAD (i.e. may not be correct).
Note that the VarAssn case will be treated in part e.

let rec optimize (e:exp) : exp =
begin match e with

OK[X] BAD[] | Var _ -> e
OK[X] BAD[] | Lit _ -> e

| Add (e1, e2) ->
begin match (optimize e1, optimize e2) with

OK[X] BAD[] | (Lit x1, Lit x2) -> Lit (x1 + x2)
OK[X] BAD[] | (Lit 0, o2) -> o2
OK[X] BAD[] | (o1, Lit 0) -> o1
OK[X] BAD[] | (o1, o2) -> Add(o1, o2)

end
| Mul (e1, e2) ->

begin match (optimize e1, optimize e2) with
OK[X] BAD[] | (Lit x1, Lit x2) -> Lit (x1 * x2)
OK[] BAD[X] | (Lit 0, _) -> Lit 0
OK[] BAD[X] | (_, Lit 0) -> Lit 0
OK[X] BAD[] | (Lit 1, o2) -> o2
OK[X] BAD[] | (o1, Lit 1) -> o1
OK[X] BAD[] | (o1, o2) -> Mul(o1, o2)

end

| VarAssn(x,e1) -> (* hand led i n p a r t e *)
end

e. (4 points) In the blank parts of the code below, implement one correct, non-trivial optimization that
can be applied to the VarAssn expression. You’ll need to fill in the pattern and the right-hand-side of the
case. Your optimization should (at least in some circumstances) produce a smaller expression.

Answer: We provide two acceptable optimizations.

let rec optimize (e:exp) : exp =
(* . . . *)
| VarAssn(x,e1) ->

begin match (optimize e1) with

| VarAssn(y,o1) ->
if x = y then VarAssn(x, o1)
else VarAssn(x,VarAssn(y,o1))

| Var y ->
if x = y then Var x
else VarAssn(x, Var y)

| o1 -> VarAssn(x, o1)
end

end

4

3. X86 and Calling Conventions (22 points)

Recall that according to the x86-64 calling conventions that we have been using, the first six arguments to
a function are passed in registers %rdi, %rsi, %rdx, %rcx, %r8, %r9 and later arguments are passed on the
stack in reverse order. The function result is returned in %rax.

Appendix B shows a C program that computes factorial, along with X86 code that might result from
compiling the program.

a. (1 point) Which X86 code label corresponds to the program point between lines 4 and 5 of the C
program (i.e. the start of the “then” branch)?
2 lbl_a � lbl_b 2 lbl_c

b. (1 point) Which X86 code label corresponds to the program point between lines 6 and 7 of the C
program (i.e. the start of the “else” branch)?
� lbl_a 2 lbl_b 2 lbl_c

c. (2 points) Suppose that we replace the subq instruction on line 13 of the X86 code with the following:
leaq -1(%rcx), %rcx

Would the program’s behavior be changed? (Briefly explain why or why not.)
No: subq $1, %rcx subtracts 1 from the contents of %rcx and so does the leaq instruction with those
operands .

d. (2 points) Suppose that the main code has the following instructions:
_main:

...
movq $3, %rsi
movq $5, %rdi
callq _factorial

Assuming that addresses occupy 8 bytes, how many total bytes of stack space will be used during
this call to factorial? (Include the space used by recursive calls and any consumed by the calling
conventions, including the saved return address.)
2 96 bytes (96 = 3 × 32) 2 160 bytes (160 = 5 × 32)
2 120 bytes (120 = 3 × 40) 2 200 bytes (200 = 5 × 40)
2 128 bytes (128 = 3 × 48) � 240 bytes (240 = 5 × 48)
2 some other amount

5

The X86 calling conventions that we have used so far assume that the caller will do some useful work after
calling the function but before returning (i.e. to use the result of the called function in some interesting
way.) In the case that the caller immediately returns the result of the call—i.e. the call is in tail position—a
more efficient implementation is often possible.

For example, when the body of f ends in return g(...);, the unoptimized code would look like:
f:

pushq %rbp ## save base pointer
movq %rsp , %rbp ## set up local stack frame
... ## set up function args
callq g ## (tail) call to g
movq %rax , %rax ## move result of g into return register
popq %rbp ## restore base pointer
retq

Assuming that g follows the calling conventions too, this kind of tail call can often be optimized by using
a jmp instruction, so the sequence above would become:
f:

pushq %rbp ## save base pointer
movq %rsp , %rbp ## set up local stack frame
... ## set up function args
popq %rbp ## restore base pointer (early!)
jmp g ## optimized tail call to g

Choose one answer:

e. (2 points) Under what circumstances is removing movq op1, op1 (e.g. where op1 is %rax) guaranteed
to not change the behavior of the program?

2 It is always correct to do this optimization.
2 It is correct if the code segment of memory is read only (i.e. can’t be written or executed).
� It is correct if the code segment of memory is execute only (it can’t be read or written).
2 It is correct if the code segment of memory is write only (it can’t be read or executed).

f. (2 points) Why is it correct to replace the callq g and subsequent retq with jmp g?

� When g returns, f’s return address will still be on the top of the stack, so control will be passed
back to f’s caller, as required.

2 When g returns, g’s return address will still be on the top of the stack, so control will be passed
back to f, as required.

2 Since f does not return, neither will g.
2 Since callq pushes a return address and retq pops one, it is always safe to remove callq/retq

pairs like in this example.

g. (2 points) Why is it correct to move the popq instruction before the jmp to g ?

2 %rbp is not used for function arguments and it is a caller save register.
� %rbp is not used for function arguments and it is a callee save register.
2 The code in g will leave %rsp unchanged.
2 The instruction popq %rbp is equivalent to addq %rsp, $8.

6

Now consider the following C program that implements a tail recursive version of factorial. It takes two
inputs, n (the usual input), and acc (an accumulator). It returns n! × acc, so we can compute factorial of n

by starting with an accumulator of 1, that is by doing facttail(n, 1).
int64_t facttail(int64_t n, int64_t acc) {

if (n <= 1) {
return acc;

} else {
return facttail(n - 1, n * acc);

}
}

Note that the recursive use of facttail is itself a tail call, which means that it can be compiled via jmp as
explained above. Moreover, any function that does not need to allocate stack space (and does not modify
%rbp) doesn’t need to set up the stack frame. With a bit of smart register usage, this means that the program
above can be optimized to the following code, where we have omitted some of the operands. (Note that
this is an efficient loop and much shorter than the non-tail version!)

h. (8 points) Fill in the blanks below with operands to complete the optimized implementation of
facttail. It should comply with the X64 calling conventions. You will need to use the operands:
$1, %rsi, %rdi, and %rax (perhaps multiple times each):
_facttail: ## @facttail

cmpq $1, %rdi
j gt then ## Jump if "greater than"
jmp else

then:
imulq %rdi , %rsi
subq $1, %rdi
jmp _facttail

else:
movq %rsi , %rax
retq

i. (2 points) Suppose that the main code has the following instructions.
_main:

...
movq $1, %rsi
movq $5, %rdi
popq %rbp
jmp _facttail

Assuming that addresses occupy 8 bytes, how many total bytes of stack space will be used during
this call to facttail?
� 0 bytes 2 8 bytes
2 16 bytes 2 40 bytes (40 = 8× 5)
2 some other amount

7

4. LLVM IR (20 points)

Consider the two LLVM IR types shown below.
%A = type { i64 , %B* }
%B = type { %A, [3 x %A], %A }

Assume that (as in our LLVM lite) pointers are 8 bytes wide and that all data is 8-byte aligned (padding
will not play a role in these questions).

a. (2 points) How many bytes will be allocated on the stack by the LLVM instruction %v = alloca %A?

16

b. (2 points) How many bytes will be allocated on the stack by the LLVM instruction %w = alloca %B?
Below, sizeof(%A) stands for your answer from part a.

5× sizeof(%A)

c. (2 points) Assuming that uid %a contains a base pointer of type %A*, what is the type of uid %ptr

calculated by the instruction:
%ptr = getelementptr %A, %A* %a, i32 0, i32 1

2 %A* 2 %B* 2 %A** � %B**

The types above were obtained by compiling the following C program.
1 struct B; / / f o rward d e c l a r a t i o n
2 struct A {int64_t x; struct B* y;};
3 struct B {struct A f, g[3], h; };
4
5 void foo() {
6 struct A a;
7 struct B b;
8 a.y = &b;
9 b.g[2] = a;

10 b.g[2].x = 341;
11 }

d. (2 points) Assuming that uid %tmp contains the base pointer of type %A*, which of the following
getelementptr instructions would be used to calculate the address assigned to on line 8?
2 %ptr = getelementptr %A, %A* %tmp, i32 1

� %ptr = getelementptr %A, %A* %tmp, i32 0, i32 1

2 %ptr = getelementptr %A, %A* %tmp, i32 0, i32 2

2 %ptr = getelementptr %A, %A* %tmp, i32 1, i32 0

e. (2 points) Assuming that uid %tmp contains the base pointer of type %B*, which of the following
getelementptr instructions would be used to calculate the address assigned to on line 10?
2 %ptr = getelementptr %B, %B* %tmp, i32 1, i32 1, i32 2

2 %ptr = getelementptr %B, %B* %tmp, i32 1, i32 2, i32 0

2 %ptr = getelementptr %B, %B* %tmp, i32 0, i32 2, i32 1, i32 0

� %ptr = getelementptr %B, %B* %tmp, i32 0, i32 1, i32 2, i32 0

8

Recall that the LLVM IR code for a function declaration is structured into a control flow graph (CFG),
whose nodes consist of labeled basic blocks. There is an edge from one basic block to another if the
terminator instruction of the first mentions label of the second. Appendix C contains the LLVM IR code
for a version of the factorial function as shown in lecture.

e. (1 point)
True � or False 2

Rearranging the order in which a CFG’s labeled blocks appear does not change the meaning of the
LLVM code.

f. (3 points) The control-flow graphs of LLVM IR code are more structured than x86 assembly. Briefly
describe a control-flow behavior expressible in an x86 program that cannot be represented using the
LLVM (lite) IR used in this class.
In x86 you can do a computed jump, i.e. to jump to some offset of a label; that jump target need not
be the entry point of a basic block. In x86 you can have “fallthrough” code that enters a basic block
without a jump.

g. (3 points) The entry block of an LLVM IR function does not have its own label. Briefly explain why
that design choice is justified.
This means that the only way for control to reach the entry block is via the call instruction. The
function entry needs special treatment in the backend (i.e. to set up the stack frame and move in
function arguments), so jumping to that code from elsewhere in the CFG would make compilation
harder (you need to jump around the function preamble).

h. (3 points) Recall that most LLVM IR instructions are of the form %uid = bop T %opnd1, %opnd2, where
%uid names the result and the operands can be literals or other, previously named, unique identifiers,
but operands do not include nested arithmetic operations. Why is this a good structure for an inter-
mediate representation? (Briefly explain.)
Translating to this form means that we have “named” the results of all intermediate computations,
which has several benefits, including: it enforces a particular order of evaluation, intermediate results
can be shared (e.g. by optimization), and this form is closer to the way that assembly code works, so
it’s easier to generate assembly from this form.

9

5. Lexing, Parsing, and Grammars (14 points)

a. (3 points) The context free grammar S ::= aS | ε, which generates the set of all strings consisting
of only a’s, is unambiguous. Define an ambiguous grammar for the same language.
S ::= a | SS | ε is one possible answer.

b. (2 points) Consider the following grammar where the � and ? terminal symbols stand for infix binary
operators (over integers).

E ::= F � E | F
F ::= F ? G | G
G ::= int | (E)

• Which of � and ? has higher precedence? 2 � � ?

• Which of � and ? is right associative? � � 2 ?

c. (4 points) Consider the following grammar for the concrete syntax of a subset of OCaml expressions,
where var represents variable names like x, y, z, etc.

E ::= var | if var then E | if var then E else E

Show that this grammar is ambiguous by giving two different leftmost derivations for the string
below. (This is known as the “dangling else” problem.) Underline the nonterminal being rewritten
in each step.

“if x then if y then y else z”

Derivation 1:

E → if x then E
→ if x then if y then E else E
→ if x then if y then y else E
→ if x then if y then y else z

Derivation 2:

E → if x then E else E
→ if x then if y then E else E
→ if x then if y then y else E
→ if x then if y then y else z

d. (5 points) Disambiguate the grammar above so that each else is associated with the closest if that
does not already have an else. For example, for the string above, else z should be always associated
with the if y, and never with if x.
Rewrite the grammar so that E0 is the new start symbol and there are two additional nonterminals,
E1 and E2. Hint: Think about how matched (i.e. with an else) and unmatched if’s can nest.

E0 ::= E1 | E2

E1 ::= if var then E0 | if var then E2 else E1

E2 ::= var | if var then E2 else E2

10

CIS341 Midterm 2020 Appendices
(Do not write answers in the appendices. They will not be graded)

1

Appendix A: OCaml Code for Expressions
This code is a simple variant on the interpreters used in the first project. There is one new constructor for the exp

type that represents “assignment expressions.”

(* V a r i a b l e s are r e p r e s e n t e d as s t r i n g s *)
type var = string

(* A b s t r a c t s y n t a x f o r e x p r e s s i o n s *)
type exp =

| Var of var
| Add of exp * exp
| Mul of exp * exp
| Lit of int
(* New *)
| VarAssn of var * exp

(* The t y p e o f s t a t e s mapping each v a r i a b l e t o an [i n t] *)
type state = var -> int

(* The i n i t i a l s t a t e maps e v e r y v a r i a b l e t o 0 *)
let init_state : state =

fun x -> 0

(* Update an o l d s t a t e [s] t o one t h a t maps ‘ x ‘ t o ‘ v ‘ b u t i s o t h e r w i s e
* unchanged . *)

let update (s:state) (x:var) (v:int) : state =
fun (y:var) ->

if x = y then v else s y

(* Look up t h e v a l u e o f a v a r i a b l e i n a s t a t e : *)
let lookup (s:state) (x:var) : int = s x

2

Appendix B: X86 Factorial Code
The following C code defines a factorial function for 64-bit integers.

1 #include <stdint.h>
2
3 int64_t factorial(int64_t n) {
4 if (n <= 1) {
5 return 1;
6 } else {
7 return n * (factorial (n - 1));
8 }
9 }

The following X86 assembly code is the result of compiling the above C program (without optimizations,
and with some renaming of the block labels).

1 .globl _factorial ## -- Begin function factorial
2 _factorial: ## @factorial
3 pushq %rbp
4 movq %rsp , %rbp
5 subq $32 , %rsp
6 movq %rdi , -16(%rbp)
7 cmpq $1, -16(%rbp)
8 j gt lbl_a
9 jmp lbl_b

10 lbl_a:
11 movq -16(%rbp), %rax
12 movq -16(%rbp), %rcx
13 subq $1, %rcx
14 movq %rcx , %rdi
15 movq %rax , -24(%rbp)
16 callq _factorial
17 movq -24(%rbp), %rcx
18 imulq %rax , %rcx
19 movq %rcx , -8(%rbp)
20 jmp lbl_c
21 lbl_b:
22 movq $1, -8(%rbp)
23 jmp lbl_c
24 lbl_c:
25 movq -8(%rbp), %rax
26 addq $32 , %rsp
27 popq %rbp
28 retq

3

Appendix C: LLVMLite IR

define i64 @factorial(i64 %n) {
%1 = alloca i64
%acc = alloca i64
store i64 %n, i64* %1
store i64 1, i64* %acc
br label %loop

loop:
%3 = load i64* %1
%4 = icmp sgt i64 %3, 0
br i1 %4, label %body , label %post

body:
%6 = load i64* %acc
%7 = load i64* %1
%8 = mul nsw i64 %6, %7
store i64 %8, i64* %acc
%9 = load i64* %1
%10 = sub nsw i64 %9, 1
store i64 %10, i64* %1
br label %loop

post:
%12 = load i64* %acc
ret i64 %12

}

4

