CIS 341 Midterm

Name (printed): \qquad

Pennkey (login id):

\qquad

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Signature: \qquad Date: \qquad

1	$/ 22$
2	$/ 20$
3	$/ 20$
4	$/ 18$
Total	$/ 80$

- Do not begin the exam until you are told to do so.
- You have 80 minutes to complete the exam.
- There are 80 total points.
- There are 10 pages in this exam and a separate 5 page appendix.
- Make sure your name and Pennkey (a.k.a. Eniac username) is on the top of this page.
- Be sure to allow enough time for all the problems-skim the entire exam first to get a sense of what there is to do.

1. Interpreters and Language Semantics (22 points)

We saw in the first homework how it is easy to implement an interpreter for a simple language of arithmetic expressions. Interpreted languages like Python, Javascript, Perl, and Ruby use similar techniques but provide many more language features. Alas, these dynamically typed languages are also prone to programming "Wat!?"s-simple programs that violate programmer expectations. For example, in Ruby it is possible for the code $\mathrm{x} * \mathrm{y}$ to produce the empty string but $\mathrm{y} * \mathrm{x}$ to fail with an exception, violating commutativity! (Wat!?) In this problem we will explore how strange behaviors like this can easily arise in interpreted languages.

Step 1: Adding Boolean Values We first extend the expression language with boolean constants, an equality test, which creates boolean values, and a conditional expression, which lets us use them. This code is shown in Appendix A. The big change, compared with the expression language of the homework, is the new value datatype, which indicates that there are two types of values produced by our interpreter: integers and booleans, tagged using the OCaml constructors Int and Bool, respectively.
The next two questions pertain to the value and exp datatypes.
a. (1 point) Which of the following OCaml terms is an appropriate abstract syntax representation of the object-language expression (0 * x) == False ?
\square Mul (Eq (Int 0, Var "x"), Bool false)Mul (Eq (Imm (Int 0), Var "x'’), Imm (Bool false))Eq (Mul (Int 0, Var "x"), Bool false)
\square Eq (Mul (Imm (Int 0), Var "x"), Imm (Bool false))
b. (1 point) We use the concrete syntax if e1 then e2 else e3 for the abstract syntax If(e1, e2, e3). Which of the following concrete syntax strings corresponds to
\square if $x==y$ then x else ($y==x$)if $x==y$ then ($y==x$) else yif $x==(y==x)$ then x else y
if $(x==y)==x$ then x else y
c. (8 points) Recall that we use a context to give meaning to the variables that might be mentioned in an expression. For each context below, indicate which result that the interpreter shown in Appendix A produces for interpret ctxt e, where e is a suitable encoding of the object-language concrete syntax for the expression:

$$
\text { if }(x==0) \text { then } y \text { else } x
$$

Note that the interpreter uses eqv to "lift" OCaml's notion of equality to work on object-language values.
i. let ctxt $=[(" x "$, Int 0$)]$Bool true
"variable x not defined"
\square Int 1 Bool false"variable y not defined"
ii. let ctxt $=[(" x "$, Int 1)]
\square Int 0 $\quad \square$ Bool true
Bool false"variable x not defined"Bool false"variable y not defined" iii. let ctxt $=[(" x "$, Int 0$)$; ("y", Bool true) $]$Int 0 Bool true"variable x not defined"Int 1
Bool false"variable y not defined"
iv. let ctxt = [("x", Bool false); ("y", Bool true)]Int $0 \quad \square$
Bool true
"variable x not defined"Int $1 \quad \square$ Bool false"variable y not defined"
d. (6 points) As implementors of this language, we might like to make it have better performance. In the space below, write code that replaces the case for Mul so that it "short circuits" the computation of e1 * e2: when e1 evaluates to zero the optimized interpreter doesn't evaluate e2 at all and simply returns zero. (If e2 is expensive, this can be a significant win.) Your solution should still use mulv if e1 does not evaluate to 0.

```
let rec interpret (c:ctxt) (e:exp) : value =
    begin match e with
        | ... (* other cases remain the same *)
        | Mul(e1, e2) ->
```

 end
 e. (2 points) The optimization proposed in part e. changes the computed outcome of some programs. Write a term (using abstract syntax) that will yield a different outcome under this "optimized" interpreter. Assume that both versions of the interpreter still use the definition of mulv from the Appendix. Describe the outcome under the original and the "optimized" semantics:

```
let example : exp =
```

Original outcome: \qquad Optimized outcome: \qquad
f. (4 points) One place where adding support for additional primitive datatypes is a bit tricky is deciding how to handle the basic operators like equality and multiplication. Because the language is not statically typed, we have to determine what to do with an expression like $x * y$ when x and y are arbitrary values (i.e. including booleans), not just when x and y denote integers.

The function mulv, given in the Appendix, is one possible implementation of such a multiplication function: it succeeds, producing a tagged Int when both of its arguments are Int values, and fails with a dynamic type error otherwise. It is tempting (and many languages succumb to such temptations) to "define" multiplication for non-integer values in an ad-hoc way.
Suppose we change mulv to the following, which overloads * to mean "logical and" for booleans; it also silently converts True to 1 and False to 0 when multiplying mixed integers and booleans.

```
let mulv (v1:value) (v2:value) : value =
    match v1, v2 with
    | Int x , Int y -> Int (x*y)
    | Bool a, Int y -> if a then Int y else Int 0
    | Int x , Bool b -> if b then Int x else Int 0
    | Bool a, Bool b -> Bool (a && b )
```

This definition might seem convenient, but it interacts poorly with the equality operator $==$ as implemented by eqv. To see why, consider the following two mathematical expressions, which are equivalent under the ordinary rules of arithmetic:

$$
\begin{aligned}
& \text { if } x=1 \text { then (if } x \times y=y \text { then } 1 \text { else } 2 \text {) else } 3 \\
& \text { if } x=1 \text { then } 1 \text { else } 3
\end{aligned}
$$

A direct transliteration of the above math into our programming language gives us these two expressions:

```
if x == 1 then (if x * y == y then 1 else 2) else 3
    if x == 1 then 1 else 3
```

Prove that, with the overloaded definition of mulv above, these two programs have different semantics by giving values for x and y on which the two programs are interpreted differently. (Wat?!)

$$
x=
$$

\qquad $y=$ \qquad

2. X86 and Calling Conventions (20 points)

Recall that according to the x86-64 calling conventions that we have been using, the first six arguments to a function are passed in registers \%rdi, \%rsi, \%rdx, $\% r c x, \% r 8, \% r 9$ and later arguments are passed on the stack in reverse order. The function result is returned in \%rax. In this problem we will explore how this calling convention can be used to implement the C programming-language feature of "varargs"-functions that accept a variable number of arguments.
The following C program calls the function add_em_up, which accepts one or more arguments.

```
extern int64_t add_em_up (int64_t arg_count,...)
int main (void) {
    printf ("%llu\n", add_em_up (3, 5, 5, 6)); /* prints l6. */
    printf ("%llu\n", add_em_up (10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); /* prints 55. */
    return 0;
}
```

The first argument to add_em_up is an integer that specifies the number of arguments that follow. The "..." in the function prototype represents this statically-unknown number of arguments. main uses the C standard library printf function (which is itself a vararg function!) to print the resulting of calling add_em_up twice, once with 4 arguments and once with 11 arguments. (Note: the printf format \%llu marks a placeholder for a 64-bit unsigned integer.)

X86 code corresponding to this main function can be found in Appendix B, along with a (hand-written) implementation of add_em_up.
Suppose we run the x 86 program starting from main.
a. (3 points) Consider the first call to add_em_up. What 64 -bit integer value will be contained in the register \%r10 when execution reaches line 12 of add_em_up? (This line is marked with [A].)-2

- 3
5 6
b. (3 points) Consider the second call to add_em_up. According to this code, what value does the memory location pointed to by \%r11 contain once execution has reached the end of line 10 in add_em_up? (This line is marked with $[\mathrm{B}]$.)
$\square 10$ (a 64-bit integer)
$\square 6$ (a 64-bit integer)
\square a return address (which points to the instruction at line 26 of main)
\square the saved \%rbp value that was pushed to the stack on line 4 of add_em_up
c. (3 points) Consider line 17 of add_em_up (marked with [C]). What do the parentheses around (\%r11) mean?
\square Nothing, they're not significant.
\square They indicate an "indirect" operand whose meaning is the value pointed to by \%r11 when it is treated as a memory address.
\square They indicate an "indirect" operand whose meaning is the value of the address stored in \%r11
\square They mark \%r11 as a callee-save register.
d. (3 points) Suppose that we changed line 6 of main to be mova $\$ 6$, \%rdi (while leaving the rest of the code untouched). What effect would this have when we run the program? The program would...
crash before printing any output.print 16 but crash before printing second sum.print a "garbage" value (which looks like a large random number) and then print 55print 16 and then print a "garbage" output
e. (3 points) Suppose that we instead changed line 14 of main to be mova $\$ 6$, \%rdi (while leaving the rest of the code untouched). What effect would this have when we run the program? The program would...print 16 but crash before printing second sum.print 16 but then print a a "garbage" value (which looks like a large random number)print 16 and then print 21print 16 and then print 25
f. (5 points) The code for add_em_up that is given in the Appendix was hand written in x86 assembly, but that isn't very easy to use. The C programming language supports vararg functions by offering the programmer several macros: va_list, va_start, va_arg, and va_end whose use is shown in the C implementation of add_em_up shown below:

```
int64_t add_em_up (int64_t count,...) {
    va_list ap;
    int64_t i, sum = 0;
    va_start (ap, count); /* Initialize the argument list. */
    for (i = 0; i < count; i++) {
        sum += va_arg (ap, int64_t); /* Get the next argument value. */
    }
    va_end (ap); /* Clean up. */
    return sum;
}
```

As shown above, va_list is a kind of iterator for the vararg function arguments: va_start initializes the iterator and va_arg takes the expected type of the "next" argument (here int64_t), returns the result, and advances the iterator. It is not possible to access the varargs in a different order (i.e. to access a later vararg before an earlier one). Based on your understanding of the C calling conventions, explain why not:

3. LLVM IR (20 points)

This problem examines the design of the LLVM IR. For your reference, Appendix C contains an excerpt of the LLVM Lite IR we used in homework three.
a. (5 points) Recall that the Bitcast operation, as specified in the project description, casts a value from one pointer type to another pointer type. Suppose we relax this restriction to allow Bitcast to also convert between i64 values and pointer values. Does this change affect how Bitcast is compiled to $\times 86$ assembly? (Assume that we target the 64-bit subset of $\times 86$ as in the homework.) Briefly explain.
b. (5 points) Suppose that, in addition to making Bitcast more flexible as described in part a, we also remove the Call instruction from the LLVM IR. Do these changes affect the expressiveness of the IR? That is, can we simulate the semantics of the call instruction using only the remaining LLVM constructs? If call cannot be simulated, briefly explain why not. If call can be simulated, explain which other LLVM instruction(s) can be used instead.
c. (5 points) Suppose that, in addition to making Bitcast more flexible as described in part a, we also remove the GEP (getelementptr) instruction from the LLVM IR (but leave call as usual). Do these changes affect the expressiveness of the IR? That is, can we simulate the semantics of the GEP instruction using only the remaining LLVM constructs? If GEP cannot be simulated, briefly explain why not. If GEP can be simulated, explain which other LLVM instruction(s) can be used instead.
d. (5 points) Consider the following LLVM program in which parts of the GEP path parameters have been omitted:

```
%T1 = type {%T2*, [ 4 x i64 ] }
%T2 = type {%T1*, i64, i64}
@G1 = global %T1 {%T2* @G2, [4 x i64] [i64 42, i64 43, i64 44, i64 45]}
@G2 = global %T2 {%T1* @G1, i64 101, i64 341}
define i64 @foo(i32 %x) {
    %ptr1 = getelementptr %T2, %T2* @G2, i32 0,
    %v1 = load i64, i64* %ptr1
    %ptr2 = getelementptr %T2, %T2* @G2, i32 0, __-_-_-_---_-_-----------
    %v2 = load %T1*, %T1** %ptr2
    %ptr3 = getelementptr %T1, %T1* %v2, i32 0,
    %v3 = load i64, i64* %ptr3
    %ans = add i64 %v1, %v3
    ret i64 %ans
}
```

Fill in the blanks above to complete the GEP paths so that the calls:

```
%a = i64 call foo(i32 0)
%b = i64 call foo(i32 2)
```

result in \%a containing 383 and \%b containing 385.

4. Lexing, Parsing, and Grammars (18 points)

This problem considers some issues with lexing and parsing OCaml expressions. Our grammar will be built from the following tokens, according to the lexer specification shown below (where we've omitted the standard definitions of whitespace and character):

```
type token = ARR | LPAREN | RPAREN | FUN | VAR of string
rule token = parse
    | whitespace+ { token lexbuf } (* skip whitespace *)
    | 'fun' { FUN }
    | character+ { VAR (lexeme lexbuf) }
    | "->" { ARR }
    | '(' { LPAREN }
    | ')' { RPAREN }
    | _ as c { failwith "unexpected char" }
```

a. (2 points) According to the lexer definition above, how many tokens will be produced when tokenizing the string "fun $\mathrm{x}->\mathrm{z} \mathrm{x}$ "?

Consider the following grammar for the concrete syntax of a subset of OCaml expressions, where var is the token for variable names like $\mathrm{x}, \mathrm{y}, \mathrm{z}$, etc.

$$
\begin{aligned}
& E::=\text { var } \\
& \text { | } E E \\
& \text { fun var } \rightarrow \text { - } E \\
& \text { (} E \text {) }
\end{aligned}
$$

b. (4 points) Demonstrate that this grammar is ambiguous by giving two distinct, leftmost derivations for the string "fun x -> z x"
Derivation 1 :
Derivation 2 :

$$
E \rightarrow \quad E \rightarrow
$$

c. (8 points) Disambiguate the grammar above so that it follows OCaml's usual parsing rules. Recall that OCaml uses whitespace to stand for function application. Such applications should be left associative and should have higher precedence than any function binder fun $x \rightarrow E$.
Rewrite the grammar so that E_{0} is the new start symbol. Introduce as many new nonterminals E_{1}, E_{2}, E_{3}, etc., as needed.

$$
E_{0} \quad::=
$$

d. (4 points) The Lisp and Scheme programming languages are infamous (and sometimes derided) for requiring the use of many parentheses. However, that design does have a significant benefit: the entire language grammar can be written as follows, where the atom token includes variables and literal constants. Here () is pronounced "nil" and (S . S) is a "cons cell" (this is actually where OCaml gets the name for its list constructors).

This grammar is not quite in $\operatorname{LL}(1)$ form. Write an equivalent grammar that is:

