
CIS 341 Midterm March 2, 2017

SOLUTIONS
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1. True or False (14 points)

Mark each statement as either true or false.

a. T F The typical compiler consists of several phases, including: lexing, parsing, transformation
to an IR, optimization, and finally, code generation (in that order).

b. T F It is possible for a compiler optimization to improve the asymptotically improve the running
time of a program (e.g. from O(n2) to O(n).)

c. T F The regular expression (a∗|b∗)∗ recognizes the language of strings consisting of some
number of a’s followed by the same number of b’s.

d. T F The LLVM is a “Static Single Assignment” IR, which means that all local identifiers (e.g.
%1, %x, etc.) are allocated on the stack.

e. T F Other than the entry block, the order in which basic blocks appear within an LLVM function
declaration does not affect the meaning of the program.

f. T F There are some X86lite programs that cannot be represented by well-formed LLVMlite
control-flow graphs.

g. T F The linker and loader (as we saw in HW2) together determine the memory addresses
represented by each label of the X86 assembly code.
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2. Compilation and Intermediate Representations (24 points)

In this problem, we consider different ways to compile boolean expressions to a very simplified LLVM IR
target. An OCaml representation of the LLVM subset we use is given in Appendix B.

The appendix also gives a datatype of boolean-valued expressions (repeated below), which will constitute
the source language for the purposes of this problem:

type bexp =
| Var of string
| True
| False
| Not of bexp
| And of bexp * bexp
| Or of bexp * bexp

The usual way to compile such a boolean expression to an LLVM-like IR is to generate code that computes
an answer, yielding the result in an operand. The function compile_bexp_block, given in the appendix
does exactly that; it relies on the helper compile_bexp to do most of the hard work of “flattening” nested
expressions into LL code. (Note that a source variable Var x is compiled to a LL uid Id x, which would be
pretty-printed as %x.)

(a) (Multiple Choice, 3pts.) Which of the following is the (pretty-printed) LL code that is obtained by
compiling the following example via compile_bexp_block?
let example : bexp = Not (Or (Var "a", And (Var "b", True )))

(i) (ii)
%tmp2 = or i1 %a, %tmp1 %tmp0 = xor i1 false , %a
%tmp1 = and i1 %b, %tmp2 %tmp1 = or i1 %b, %tmp0
%tmp0 = xor i1 false , %tmp1 %tmp2 = and i1 %tmp1 , true

ret i1 %tmp0 ret i1 %tmp2

(iii) (iv)
%tmp2 = and i1 %b, true %tmp0 = and i1 %a, true
%tmp1 = or i1 %a, %tmp2 %tmp1 = or i1 %b, %tmp0
%tmp0 = xor i1 false , %tmp1 %tmp2 = xor i1 false , %tmp1

ret i1 %tmp0 ret i1 %tmp2

(iii) is correct
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Conditional Statements Suppose that we want to use compile_bexp as a subroutine for compiling con-
ditional statements:

if (b) { stmt1 } else { stmt2 } represented via the abstract syntax: If(b, stmt1, stmt2).

Suppose b is And(Var "x", huge), where huge is a long, complicated boolean expression. A compiler that
uses the compile_bexp from the appendix would generate code for the if statement that looks like:
compile_stmt (If(b, stmt1 , stmt2)) =

[...huge_code... %tmp0 = ...] ; c o u l d be v e r y long ( ! )
tmp1 = and i1 %x, %tmp0 ; m a t e r i a l i z e b i n t o tmp1 ( ! )
br i1 %tmp1 , label %then , label %else ; branch on b ’ s v a l u e ( ! )

%then:
[... stmt1 ...] ; code f o r s t m t 1

%else:
[... stmt2 ...] ; code f o r s t m t 2

Note that LL code above “materializes” the value of b into the operand %tmp1 and then does a conditional
branch to either the block labeled %then or the block labeled %else, as appropriate.

Short Circuiting We will now explore an alternate compilation strategy for boolean expressions that
allows for “short-circuit” evaluation and is tailored for when the bexp is the guard of an if-then-else
statement. In the example above, it is a waste of time to compute the whole boolean answer if x happens to
be false—in that case, we know just by looking at x that we should jump immediately to the %else branch;
there’s no need to compute huge.

This observation suggests that we can profit by creating a variant of compile_bexp called compile_bexp_br

that, rather than computing a boolean value into an operand, instead takes in two labels (one for the
“true” branch and one for the “false” branch) and emits code that jumps directly to the correct one, short
circuiting the computation as soon as it’s clear which branch to take.

For example, consider the result of compiling the “huge” example above, where we supply the then and
else labels:
let s : stream = compile_bexp_br (And(Var "x", huge)) "then" "else"

When we pretty-print s as a sequence of LL blocks, we get the following code, which can replace the lines
marked (!) in the code at the top of this page.

br i1 %x, label %lbl1 , label %else ; i f %x i s f a l s e , jump t o %e l s e
%lbl1:

[...stream for huge...]

Note that the compiler generated the intermediate label %lbl1, which marks the start of the huge code block.
The stream for huge will contain terminators that branch to %then or %else as appropriate. Remarkably,
this compilation strategy will never need to emit instructions! A boolean expression can be completely
compiled into a series of labels and terminators (branches or conditional branches).

(There are no questions on this page.)
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(Multiple Choice, 3pts. each) It is not too hard to work out what compile_bexp_br should do by translating
some small examples by hand. Mark the code that is a correct (pretty-printed) output for each call to
compile_bexp_br. There is only one correct answer for each case.

(c) compile_bexp_br (Not(Var "a")) "then" "else" = ?

(i) (ii)
br i1 %a, label %then , label %else br i1 %a, label %else , label %then

(iii) (iv)
br i1 %a, label %else , label %lbl0 br i1 %a, label %then , label %lbl0

lbl0: lbl0:
br i1 %b, label %else br i1 %b, label %then

(ii) is correct

(d) compile_bexp_br (Or(Var "a", Var "b")) "then" "else" = ?

(i) (ii)
br i1 %a, label %lbl0 , label %else br i1 %a, label %then , label %lbl0

lbl0: lbl0:
br i1 %b, label %then , label %else br i1 %b, label %then , label %else

(iii) (iv)
br i1 %a, label %else , label %lbl0 br i1 %a, label %then , label %lbl0

lbl0: lbl0:
br i1 %b, label %then , label %else br i1 %b, label %then , label %else

(ii) and (iv) are correct [they were accidentally made the same]

(e) compile_bexp_br (And(Not(Var "a"), Var "b")) "then" "else" = ?

(i) (ii)
br i1 %a, label %lbl0 , label %else br i1 %a, label %then , label %lbl0

lbl0: lbl0:
br i1 %b, label %then , label %else br i1 %b, label %then , label %else

(iii) (iv)
br i1 %a, label %else , label %lbl0 br i1 %a, label %then , label %lbl0

lbl0: lbl0:
br i1 %b, label %then , label %else br i1 %b, label %then , label %else

(iii) is correct
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(c) (12 points) Complete the implementation of compile_bexp_br below by filling in each blank with the
correct terminator (for the first two blanks) or the correct label (for the remaining blanks) to implement
the short-circuiting code generator. Note that the And and Or cases introduce a new lmid label, which
labels the start of the second subexpression. We have done the True case for you.
type elt =

| I of LL.uid * LL.insn
| T of LL.terminator
| L of LL.lbl

type stream = elt list

let rec compile_bexp_br (b:bexp) (ltrue:LL.lbl) (lfalse:LL.lbl) : stream =
begin match b with

| True -> LL.[T (Br ltrue)]
| False -> LL.[T (Br lfalse )]
| Var s -> LL.[T (Cbr((Id s), ltrue , lfalse ))]
| Not c -> compile_bexp_br c lfalse ltrue
| And (b1, b2) ->

let lmid = mk_tmp "lbl" in
let p1 = compile_bexp_br b1 lmid lfalse in
let p2 = compile_bexp_br b2 ltrue lfalse in
p1
>@ LL.[L lmid]
>@ p2

| Or (b1, b2) ->
let lmid = mk_tmp "lbl" in
let p1 = compile_bexp_br b1 ltrue lmid in
let p2 = compile_bexp_br b2 ltrue lfalse in
p1
>@ LL.[L lmid]
>@ p2

end
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3. LLVM IR: Structured Data and Getelemenptr (21 points)

Consider the following C structured datatypes and global variables array and node. RGB is a record with
three fields and Node is a linked-list node that contains an in-lined RGB value.
struct RGB {int64_t r; int64_t g; int64_t b;};
struct Node {struct RGB rgb; struct Node* next ;};

struct RGB array[] = {{255,0,0}, {0 ,255 ,0}};
struct Node node;

These program can be represented in LLVM as the following definitions:
%RGB = type { i64 , i64 , i64 }
%Node = type { %RGB , %Node* }

@array = global [2 x %RGB] [%RGB {i64 255, i64 0, i64 0}, %RGB {i64 0, i64 255, i64 0}]
@node = global %Node ...

(Multiple Choice, 2 pts. each) For each LLVM instruction below, mark the corresponding C expression
(i.e. such that a subsequent load from %ptr would get the value of the expression).

a. %ptr = getelementptr %Node, %Node* @node, i32 0, i32 1

2 node 2 node.rgb � node.next 2 node.next.rgb

b. %ptr = getelementptr [2 x %RGB], [2 x %RGB]* @array, i64 1, i64 0, i32 1

2 array[1][0][1] 2 array[1].r � array[1].g 2 array[1].b

c. %ptr = getelementptr %Node, %Node* @node, i32 0, i32 0, i32 2

2 node.rgb[2] � node.rgb.b 2 node[2].rgb 2 node.next.rgb
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Suppose that you wanted to compile an OCaml-like language into the LLVM IR. One issue is how to
represent OCaml-style “algebraic datatypes”. Complete the following questions which prompt you to
think about a strategy for representing the following OCaml type at the LLVM IR-level. (For the purposes
of this question, ignore the fact that OCaml supports generic datatypes.)
type d =

| B
| C of int64
| D of d * d

d. (5 points) An OCaml value of type d consists of a “tag” (e.g. B, C, or D) and some associated data
values (either an int64 or a pair of references to d values). Write down a (small) number of LLVM
datatypes (including at least one for d), that can together be used to represent values of type d. Briefly
justify your representation strategy.

Answer: One possibility is to represent a value of type d as (a pointer to) a structure containing an
integer tag plus space for two 64-bit values. The value of the tag determines the contents of the rest
of the structure: e.g. if the tag is 0 then the value is B and the payload values are undefined. If the tag
is 1 then the value is C and the payload the first 64-bits of the payload are treated as an i64 value. If
the tag is 2 then the value is D and the payload is two pointers to d values.
A minimal possibility is: %d = type {i64, {i64, i64}}

Another possibility is something like the following:
%d = type { i64 , payloadD* }
%payloadD = type { %d*, %d* }

Where the i64* second field is either a pointer to the D payload or cast to an i64 value for the C
payload.
Answers like {i64, i64, {i64*, i64*}} that “inlined” all the possible data in all constructors received
1 point off because they don’t scale well to datatypes that have many constructors, each carrying
different data (e.g. an abstract syntax tree datatype).

e. (5 points) An LLVM program that constructs the representation of the OCaml value D(B, C(341))
as a stack-allocated object would need to use alloca (to allocate storage space), getelementptr
(to compute struct offsets), and store (to write values into memory). It would also have to use
the bitcast instruction (which, if you recall, converts one pointer type to any other pointer type).
Briefly explain why.
Answer: The value we want to construct is a pointer to the record that looks like:
{i64 2, {%d* %bptr , %d* %cptr}}

Here, %bptr is a pointer to a stack-allocated struct {i64 0, {%d* undef, %d* undef}} and %cptr is
a pointer to a stack-allocated struct {i64 1, {i64 341, %d* undef}}. Note that the types of the data
stored in the records disagree. This means that to construct and manipulate such values, the pointers
will have to be bitcast. For instance, to write the value i64 341 into the first element of inner
struct, we use getelementptr with the %d* value, to obtain a %d** pointer, and then bitcast that
pointer to have type i64* so that we can perform the store.
Other representation choices might require different casts to reconcile the types. Fully “inlined”
representations don’t require casts, so no points were taken off here if the answer to part (d) was
fully inlined.
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f. (5 points) In English and pseudocode, briefly explain what code you would expect to generate when
compiling the following code, assuming that the variable x of type d is compiled according to the
representation type you explained above.
let rec sum (x:d) =

match x with
| B -> 0
| C y -> y
| D (d1, d2) -> (sum d1) + (sum d2)

Answer: The invariant is to represent values of type d as pointers to values of LLVM type %d.
Therefore, to compile this pattern match, we need to:

• use getelementptr to get the address of the tag component of the %d structure
• load the tag
• if the tag is 0 branch to the “B” case
• if the tag is 1 load the i64 value into the operand corresponding to y and branch to the ’’C” case
• if the tag is 2 load the two %d* values into the operands corresponding to cdd1 and d2 and branch

to the “D” case.

Note that we will have to extend the local environment in the “C” and “D” branches to keep track of
the fact that the variables have new bindings
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4. X86 Assembly and C calling conventions (17 points)

Recall that according to the x86-64 calling conventions that we have been using, the first argument to
a function is passed in register %rdi and %rbp is a callee-save register and %rsp is caller-save. In X86lite
syntax, the source operand comes before the destination, as in movq src, dest.

For this problem, consider the small C program and the accompanying X86 assembly code shown in
Appendix B. The C code provides a print_i64 function that prints its 64-bit value to the terminal. The
main calls the function foo, which is implemented purely in assembly code as shown in foo.s When
these two files are compiled together, the resulting executable will print six numbers to the terminal.

(Multiple Choice, 3pts. each). There is only one correct answer for each case. Note that we have written
small numbers in decimal and large numbers in hexidecimal.

Suppose that the first number printed to the terminal is 0x7fff5dd00990 (written in hexidecimal), which can
be interpreted as a machine address. What will be printed by each of the five subsequent calls to print_i64?

a. 2 17 2 0x7fff5dd00990

2 42 2 0x7fff5dd00988 (i.e. 0x7fff5dd00990 - 8)
� 341 2 0x7fff5dd00980 (i.e. 0x7fff5dd00990 - 16)

b. 2 17 2 0x7fff5dd00990

� 42 2 0x7fff5dd00988 (i.e. 0x7fff5dd00990 - 8)
2 341 2 0x7fff5dd00980 (i.e. 0x7fff5dd00990 - 16)

c. 2 17 2 0x7fff5dd00990

2 42 2 0x7fff5dd00988 (i.e. 0x7fff5dd00990 - 8)
2 341 � 0x7fff5dd00980 (i.e. 0x7fff5dd00990 - 16)

d. 2 17 2 0x7fff5dd00990

� 42 2 0x7fff5dd00988 (i.e. 0x7fff5dd00990 - 8)
2 341 2 0x7fff5dd00980 (i.e. 0x7fff5dd00990 - 16)

e. 2 17 2 0x7fff5dd00990

2 42 � 0x7fff5dd00988 (i.e. 0x7fff5dd00990 - 8)
2 341 2 0x7fff5dd00980 (i.e. 0x7fff5dd00990 - 16)

f. (2 pts.) Briefly explain what will happen if you delete lines 27 and 28 of foo.s, recompile, and then
run the resulting executable.

The program will still print the same values but it will crash when it tries to do the retq, since the top of
the stack is not a good return address.
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5. Lexing, Parsing, and Grammars (14 points)

a. Consider the following unambiguous context-free grammar over the symbols a and b that accepts
palindromes—strings that read the same forward and backward. For example, a, bab, and aabaa are
all accepted by this grammar, whereas ab, aab, and baaaba are not.

P ::=
| ε
| a
| b
| aPa
| bPb

i. (Yes or No) Is this grammar deterministically parsable by an LL(k) parser (for some k)? Briefly
explain.
No, there is no way for a left-to-right scanning parser to decide where the “middle” of the
palindrome is. That is, a and aa and aaa could always be followed by an equal number of b’s,
but determining which case applies cannot be done with any finite amount of lookahead.

ii. (Yes or No) Is this grammar deterministically parsable by an LR(k) parser (for some k)? Briefly
explain.
No, there is no way for a left-to-right scanning parser to decide where the “middle” of the
palindrome is. That is, a and aa and aaa could always be followed by an equal number of b’s,
but determining which case applies cannot be done with any finite amount of lookahead.
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b. Consider the following unambiguous context-free grammar over the symbols a and b that accepts
balanced strings in which every a is followed by a matching b. For example, ab, aabb, and aababb
are all accepted, but ba, a, and aab are not.

Q ::=
| ε
| QaQb

i. (Yes or No) Is this grammar deterministically parsable by an LL(k) parser (for some k)? Briefly
explain.
No, this grammar is left-recursive which can never be parsed by a LL parser.

ii. (Yes or No) Is this grammar deterministically parsable by an LR(k) parser (for some k)? Briefly
explain.
Yes.

c. (6 points) The following ambiguous grammar of mathematical expressions includes infix binary
multiplication * and exponentiation operators ˆ as well as tokens representing variables (ranged over
by x).

E ::=
| x
| E * E
| E ˆ E

Write down a disambiguated grammar that accepts the same set of strings, but makes multiplication
left associative, exponentiation right associative, and gives exponentiation higher precedence than
multiplication. For example, the token sequence x * y ˆ z ˆ w * v * u would be parsed as though
it had parentheses inserted like: (x * (y ˆ (z ˆ w)) * v) * u .

E0 ::=
| E0 * E1

| E1

E1 ::=
| E2 ˆ E1

| E2

E2 ::=
| x
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