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while (y < z) {

    int x = a + b;

    y += x;

}
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Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

Lexical analysis (Scanning): Group sequence of 
characters into lexemes – smallest meaningful entity in a 
language (keywords, identifiers, constants)
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Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

    int x = a + b;

    y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

Syntax analysis (Parsing): Convert a linear structure – 
sequence of tokens – to a hierarchical tree-like 
structure - abstract syntax tree (AST)



  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

Input: code (character stream)

Goal of Lexical Analysis
Breaking the program down into words or “tokens”



  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

Goal of Lexical Analysis
Output:  Token Stream



What’s a token?

• What’s a lexical unit of code?



  

Scanning a Source File

w h i l e ( i  < z ) \n \t + i p ;p + +( 1  < i ) \n \t + i ;3 + +7

What       is     my    name     ?



  

Scanning a Source File

w h i l e ( i  < z ) \n \t + i p ;p + +( 1  < i ) \n \t + i ;3 + +7

Token Type

• Keyword:  for   int  if   else while 

• Punctuation: (     )    {  }  ;

• Operand:  +   -   ++

• Relation:  <  >  =

• Identifier:  (variable name, function name) foo  
foo_2

• Integer, float point, string:  2345  2.0   “hello world”

• Whitespace, comment  /* this code is awesome */
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Scanning a Source File
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Scanning a Source File

w h i l e ( 1  < i ) \n \t + i ;3 + +

T_While

7

Token

Lexeme: the piece of the 
original program from 
which we made the token



  

Scanning a Source File

w h i l e ( 1  < i ) \n \t + i ;3 + +

T_While

7

( T_IntConst

137



  

Scanning a Source File

w h i l e ( 1  < i ) \n \t + i ;3 + +

T_While

7

( T_IntConst

137

Some tokens can have 

attributes that store 

extra information about 

the token.  Here we 

store which integer is 

represented.

Some tokens can have 

attributes that store 

extra information about 

the token.  Here we 

store which integer is 

represented.



Lexical Analyzer

• Recognize substrings that correspond to 
tokens: lexemes

• Lexeme: actual text of the token

• For each lexeme, identify token type

• < Token type, attribute>

• attribute: optional, extra information, often 
numeric value



Challenges for Lexical Analyzer
• How do we determine which lexemes are 

associated with each token? 

• When there are multiple ways we could 
scan the input, how do we know which one 
to pick?

• if

• ifc

• How do we address these concerns 
efficiently?



Associate Lexemes to Tokens

• Tokens:  categorize lexemes by what 
information they provide.

• Associate lexemes to token: Pattern 
matching

• How to describe patterns??



Token: Lexemes

• Keyword:  for   int  if   else while 

• Punctuation: (     )    {  }  ;

• Operand:  +   -   ++

• Relation:  <  >  =

• Identifier:  (variable name,function name) foo  
foo_2

• Integer, float point, string:  2345  2.0   “hello world”

• Whitespace, comment  /* this code is awesome */

Finite possible 
lexemes

Infinite 
possible 
lexemes



• How do we describe which (potentially 
infinite) set of lexemes is associated with 
each token type?



  

Formal Languages

● A formal language is a set of strings.

● Many infinite languages have finite descriptions:

● Define the language using an automaton.

● Define the language using a grammar.

● Define the language using a regular expression.

● We can use these compact descriptions of the 
language to define sets of strings.

● Over the course of this class, we will use all of 
these approaches.



• What type of formal language should we 
use to describe tokens?



  

Regular Expressions

● Regular expressions are a family of 
descriptions that can be used to capture 
certain languages (the regular 
languages).

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software 
systems, including the flex tool we will 
use in this course.



  

Atomic Regular Expressions

● The regular expressions we will use in 
this course begin with two simple 
building blocks.

● The symbol ε is a regular expression 
matches the empty string.

● For any symbol a, the symbol a is a 
regular expression that just matches a.



  

Compound Regular Expressions

● If R
1
 and R

2
 are regular expressions, R

1
R

2
 is a regular 

expression represents the concatenation of the 
languages of R

1
 and R

2
.

● If R
1
 and R

2
 are regular expressions, R

1
 | R

2
 is a regular 

expression representing the union of R
1
 and R

2
.

● If R is a regular expression, R* is a regular expression for 
the Kleene closure of R.

● If R is a regular expression, (R) is a regular expression 
with the same meaning as R.



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing 
00 as a substring:

(0 | 1)*00(0 | 1)*
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Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing 
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing 
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111



  

Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)?



  

Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)



• More examples

• Whitespace:  [ \t\n]+

• Integers:  [+\-]?[0-9]+

• Hex numbers: 0x[0-9a-f]+

• identifier

• [A-Za-z]([A-Za-z]|[0-9])*



• Use regular expressions to describe token 
types

• How do we match regular expressions?



Recognizing Regular Language

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

What is the machine that recognize regular language??



  

" "start

A,B,C,...,Z

A Simple Automaton



  

" "start

A,B,C,...,Z

Each circle is a state of the 

automaton.  The automaton's 

configuration is determined 

by what state(s) it is in.

Each circle is a state of the 

automaton.  The automaton's 

configuration is determined 

by what state(s) it is in.

A Simple Automaton



  

" "start

A,B,C,...,Z

These arrows are called 

transitions.  The automaton 

changes which state(s) it is in 

by following transitions.

These arrows are called 

transitions.  The automaton 

changes which state(s) it is in 

by following transitions.

A Simple Automaton



  

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

Finite Automata:  Takes an input string and determines 
whether it’s a valid sentence of a language

accept or reject
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" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The double circle indicates that this 

state is an accepting state.  The 

automaton accepts the string if it 

ends in an accepting state.

The double circle indicates that this 

state is an accepting state.  The 

automaton accepts the string if it 

ends in an accepting state.



  

An Even More Complex Automaton
a, b

a, c

b, c

start  

    ε          

ε

    ε          

c

b

a
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These are called -transitionsε .  These 

transitions are followed automatically and 

without consuming any input.

These are called -transitionsε .  These 

transitions are followed automatically and 

without consuming any input.
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Lexer Generator

• Given regular expressions to describe the 
language (token types),  

•  Step 1: Generates NFA that can recognize 
the  regular language defined 

• existing algorithms 

• Step 2: Transforms NFA to DFA  

• existing algorithms

• Tools: lex, flex



Challenges for Lexical Analyzer

• How do we determine which lexemes are 
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could 
scan the input, how do we know which one 
to pick?

• How do we address these concerns 
efficiently?



  

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*
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Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr



  

Conflict Resolution

● Assume all tokens are specified as 
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of 
the remaining text.



  

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr



  

Implementing Maximal Munch

● Given a set of regular expressions, how 
can we use them to implement maximum 
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the 
last match.

● When all automata get stuck, report the last 
match and restart the search at that point.



• Example



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch
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A Minor Simplification

d o

d o u b l e

Σ

   ε

ε

   ε
start      

 



  

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el



  

More Tiebreaking

● When two regular expressions apply, 
choose the one with the greater 
“priority.”

● Simple priority system: pick the rule 
that was defined first.
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Implement a lexical analyzer
• Step 1: Use regular expressions to describe token types (keyword, 

identifier, integer constant..)

Number = digit + …
Keyword = ‘if ’ + ‘else’ + …
Identifier = letter (letter + digit)*
OpenPar = ‘(‘

…
      Then construct Regular language R, matching all lexemes for all tokens

  
   R = Keyword + Identifier + Number + … 

    = R1 + R2 + … 

• Step 2: Use DFA/NFA to recognize the regular language

• But...good news.  you don’t need to implement the algorithms to 
transform your regular expressions to DFA/NFA to recognize it

• flex: given regular expressions -> output c code that does lexical analysis (it 
internally generates DFA)



Lexical analyzer

REs + priorities + longest matching token rule 

= definition of a lexical analyzer



DFA vs. NFA
•  NFAs and DFAs recognize the same set of 

languages (regular languages) 
–  For a given NFA, there exists a DFA, and vice versa 

•  DFAs are faster to execute 
–  There are no choices to consider 
–  Tradeoff: simplicity 

•  For a given language DFA can be exponentially larger than 
NFA. 



Automating Lexical Analyzer (scanner) 
Construction

To convert a specification into code: 

1  Write down the RE for the input language 

2  Build a big NFA 

3  Build the DFA that simulates the NFA 

4  Systematically shrink the DFA 

5  Turn it into code 

Scanner generators 

•  Lex and Flex work along these lines 

•  Algorithms are well-known and well-understood 



Automating Lexical Analyzer (scanner) 
Construction

 
RE→ NFA  (Thompson’s construction) 

•  Build an NFA for each term 

•  Combine them with ε-moves 

NFA → DFA (subset construction) 

•  Build the simulation 

DFA → Minimal DFA 

•  Hopcroft’s algorithm                          

DFA →RE (Not part of the scanner construction)  

•  All pairs, all paths problem 

•  Take the union of all paths from s0 to an accepting state 

minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 
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Key idea 
•  NFA pattern for each symbol & each operator 
•  Join them with ε moves in precedence order 

RE →NFA using Thompson’s Construction 

S0  S1  
a

NFA for a 

S0  S1  
a

S3  S4  
b

NFA for ab 

ε 

NFA for a | b 

S0  

S1  S2  
a

S3  S4  
b

S5  
ε 

ε ε 

ε 

S0  S1  
ε S3  S4  

ε 

NFA for a* 

a

ε 

ε 

Ken Thompson, CACM, 1968 



Example of Thompson’s Construction 

Let’s try a ( b | c )*  

1.  a, b, & c 

2.  b | c 

3.  ( b | c )*   

S0  S1  
a

S0  S1  
b

S0  S1  
c

S2  S3  
b

S4  S5  
c

S1 S6  S0  S7  

ε 

ε 

ε ε 

ε ε 

ε ε 

S1  S2  
b

S3  S4  
c

S0  S5  
ε 

ε 

ε 

ε 



Example of Thompson’s Construction     (con’t) 

4.  a ( b | c )*  

 

Of course, a human would design something 
simpler ... 

S0  S1  
a

b | c 
But, we can automate production of  
the more complex one ... 

S0  S1  
a ε 

S4  S5  
b

S6  S7  
c

S3 S8  S2  S9  

ε 

ε 

ε ε 

ε ε 

ε ε 
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NFA to DFA : Trick 

•  Simulate the NFA 

•  Each state of DFA 

  = a non-empty subset of states of the NFA 

•  Start state 

  = the set of NFA states reachable through e-moves from 
    NFA start state 

•  Add a transition S !a S’ to DFA iff 
–  S’ is the set of NFA states reachable from any state in S after 

seeing the input a, considering ε-moves as well 



NFA to DFA : cont.. 

•  An NFA may be in many states at any time 
 

•  How many different states ? 
 

•  If there are N states, the NFA must be in some 
subset of those N states 
 

•  How many subsets are there? 

   2^N - 1 = finitely many 



NFA to DFA  

•  Remove the non-determinism 
–  States with multiple outgoing edges due to same input 
–  ε transitions 

2 

4 

a 

c 

start 1 

3 

b 
ε 

ε ε 

ε 
(a*| b*) c* 



NFA to DFA (2) 

•  Multiple transitions 
–  Solve by subset construction 
–  Build new DFA based upon the set of states each 

representing a unique subset of states in NFA 

1 2 
a 

a 
b R= a+ b* 

ε-closure(1) = {1} include state “1” 
(1,a) ! {1,2} include state “1/2” 
(1,b) ! ERROR 
(1/2,a) !1/2 
(1/2,b) ! 2 include state “2” 

start 1 2 

a 

a 
1/2 start b 

b 

(2,a) ! ERROR 
(2,b) ! 2 
Any state with “2” in name is a final state 



NFA to DFA (3)  

•  ε transitions 
–  Any state reachable by an ε transition is “part of the state” 
–  ε-closure - Any state reachable from S by ε transitions is in 

the ε-closure; treat ε-closure as 1 big state, always include 
ε-closure as part of the state 

2 3 

a b 

start 
1 

ε ε 

1.  ε-closure(1)     = {1,2,3};                                      include1/2/3 
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3 
3.  Move(1/2/3, b) = {3} + ε-closure(3)  = {3}          ; include state 3 
4.  Move(2/3, a)   = {2} + ε-closure(2)  = {2,3} 
5.  Move(2/3, b)   = {3} + ε-closure(3)  = {3}  
6.  Move(3, b)   = {3} + ε-closure(3)  = {3}  

a*b* 



NFA to DFA (3)  

•  ε transitions 
–  Any state reachable by an ε transition is “part of the state” 
–  ε-closure - Any state reachable from S by ε transitions is in 

the ε-closure; treat ε-closure as 1 big state, always include 
ε-closure as part of the state 

2 3 

a b 

start 
1 

ε ε 

1.  ε-closure(1)     = {1,2,3};                                      include1/2/3 
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3 
3.  Move(1/2/3, b) = {3} + ε-closure(3)  = {3}          ; include state 3 
4.  Move(2/3, a)   = {2} + ε-closure(2)  = {2,3} 
5.  Move(2/3, b)   = {3} + ε-closure(3)  = {3}  
6.  Move(3, b)   = {3} + ε-closure(3)  = {3}  

2/3 3 

a b 

start 
1/2/3 

a b 

a*b* 

b 



NFA to DFA - Example 

1 
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3 start 

a 

a 
b 

a 
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ε 

ε 



B 

NFA to DFA - Example 

1 

2 

3 start 

a 

a 
b 

a 

4 

6 5 

ε 

ε 

ε 

a 

b 

b 

A 

4 

6 a 
a start 

ε-closure(1) = {1, 2, 3, 5} 

 Create a new state  A = {1, 2, 3, 5} 

move(A, a) = {3, 6}  + ε-closure(3,6) = {3,6} 

Create B = {3,6} 

move(A, b) = {4} + ε-closure(4)  = {4} 

move(B, a) = {6} + ε-closure(6)  = {6} 

move(B, b) = {4} + ε-closure(4)  = {4} 

 

move(6, a) = {6} + ε-closure(6) = {6} 

move(6, b) ! ERROR 
 

move(4, a|b) ! ERROR 



Class Problem 

0 1 
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b 

8 b 

Convert this NFA to a DFA 
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State Minimization 

•  Resulting DFA can be quite large 
–  Contains redundant or equivalent states 
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b 
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1 2 3 
start 

a a 

b b 

Both DFAs accept 
b*ab*a 



State Minimization (2) 

•  Idea – find groups of equivalent states and 
merge them 
–  All transitions from states in group G1 go to states in 

another group G2 
–  Construct minimized DFA such that there is 1 state for 

each group of states 

2 

5 

b 

start 
1 

3 

b 

a 
b 

a 
a 

4 

b 

a 

Basic strategy: identify 
distinguishing transitions 
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DFA Implementation 

•  A DFA can be implemented by a 2D table T 
–  One dimension is “states” 
–  Other dimension is “input symbol” 
–  For every transition Si !a Sk define T[i,a] = k 

•   DFA “execution” 
–  If in state Si and input a, read T[i,a] = k and skip to 

state Sk 
–  Very efficient 



DFA Table Implementation : Example 



Implementation Cont .. 

•  NFA -> DFA conversion is at the heart of tools 
such as flex 

•  But, DFAs can be huge 

•  In practice, flex-like tools trade off speed for 
space in the choice of NFA and DFA 
representations 


