
Lexical Analysis
Dec 6, 2021

Previously on EECS 483...

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Structure of a modern compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

Lexical analysis (Scanning): Group sequence of
characters into lexemes – smallest meaningful entity in a
language (keywords, identifiers, constants)

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

Syntax analysis (Parsing): Convert a linear structure –
sequence of tokens – to a hierarchical tree-like
structure - abstract syntax tree (AST)

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

Input: code (character stream)

Goal of Lexical Analysis
Breaking the program down into words or “tokens”

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

Goal of Lexical Analysis
Output: Token Stream

What’s a token?

• What’s a lexical unit of code?

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

What is my name ?

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Token Type

• Keyword: for int if else while

• Punctuation: () { } ;

• Operand: + - ++

• Relation: < > =

• Identifier: (variable name, function name) foo
foo_2

• Integer, float point, string: 2345 2.0 “hello world”

• Whitespace, comment /* this code is awesome */

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File

w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Token

Lexeme: the piece of the
original program from
which we made the token

Scanning a Source File

w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(T_IntConst

137

Scanning a Source File

w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(T_IntConst

137

Some tokens can have

attributes that store

extra information about

the token. Here we

store which integer is

represented.

Some tokens can have

attributes that store

extra information about

the token. Here we

store which integer is

represented.

Lexical Analyzer

• Recognize substrings that correspond to
tokens: lexemes

• Lexeme: actual text of the token

• For each lexeme, identify token type

• < Token type, attribute>

• attribute: optional, extra information, often
numeric value

Challenges for Lexical Analyzer
• How do we determine which lexemes are

associated with each token?

• When there are multiple ways we could
scan the input, how do we know which one
to pick?

• if

• ifc

• How do we address these concerns
efficiently?

Associate Lexemes to Tokens

• Tokens: categorize lexemes by what
information they provide.

• Associate lexemes to token: Pattern
matching

• How to describe patterns??

Token: Lexemes

• Keyword: for int if else while

• Punctuation: () { } ;

• Operand: + - ++

• Relation: < > =

• Identifier: (variable name,function name) foo
foo_2

• Integer, float point, string: 2345 2.0 “hello world”

• Whitespace, comment /* this code is awesome */

Finite possible
lexemes

Infinite
possible
lexemes

• How do we describe which (potentially
infinite) set of lexemes is associated with
each token type?

Formal Languages

● A formal language is a set of strings.

● Many infinite languages have finite descriptions:

● Define the language using an automaton.

● Define the language using a grammar.

● Define the language using a regular expression.

● We can use these compact descriptions of the
language to define sets of strings.

● Over the course of this class, we will use all of
these approaches.

• What type of formal language should we
use to describe tokens?

Regular Expressions

● Regular expressions are a family of
descriptions that can be used to capture
certain languages (the regular
languages).

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software
systems, including the flex tool we will
use in this course.

Atomic Regular Expressions

● The regular expressions we will use in
this course begin with two simple
building blocks.

● The symbol ε is a regular expression
matches the empty string.

● For any symbol a, the symbol a is a
regular expression that just matches a.

Compound Regular Expressions

● If R
1
 and R

2
 are regular expressions, R

1
R

2
 is a regular

expression represents the concatenation of the
languages of R

1
 and R

2
.

● If R
1
 and R

2
 are regular expressions, R

1
 | R

2
 is a regular

expression representing the union of R
1
 and R

2
.

● If R is a regular expression, R* is a regular expression for
the Kleene closure of R.

● If R is a regular expression, (R) is a regular expression
with the same meaning as R.

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)?

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

• More examples

• Whitespace: [\t\n]+

• Integers: [+\-]?[0-9]+

• Hex numbers: 0x[0-9a-f]+

• identifier

• [A-Za-z]([A-Za-z]|[0-9])*

• Use regular expressions to describe token
types

• How do we match regular expressions?

Recognizing Regular Language

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

What is the machine that recognize regular language??

" "start

A,B,C,...,Z

A Simple Automaton

" "start

A,B,C,...,Z

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

A Simple Automaton

" "start

A,B,C,...,Z

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

A Simple Automaton

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

Finite Automata: Takes an input string and determines
whether it’s a valid sentence of a language

accept or reject

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

Lexer Generator

• Given regular expressions to describe the
language (token types),

• Step 1: Generates NFA that can recognize
the regular language defined

• existing algorithms

• Step 2: Transforms NFA to DFA

• existing algorithms

• Tools: lex, flex

Challenges for Lexical Analyzer

• How do we determine which lexemes are
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could
scan the input, how do we know which one
to pick?

• How do we address these concerns
efficiently?

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

Conflict Resolution

● Assume all tokens are specified as
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of
the remaining text.

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

Implementing Maximal Munch

● Given a set of regular expressions, how
can we use them to implement maximum
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the
last match.

● When all automata get stuck, report the last
match and restart the search at that point.

• Example

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

A Minor Simplification

d o

d o u b l e

Σ

 ε

ε

 ε
start

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

More Tiebreaking

● When two regular expressions apply,
choose the one with the greater
“priority.”

● Simple priority system: pick the rule
that was defined first.

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

d o bu el

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

Implement a lexical analyzer
• Step 1: Use regular expressions to describe token types (keyword,

identifier, integer constant..)

Number = digit + …
Keyword = ‘if ’ + ‘else’ + …
Identifier = letter (letter + digit)*
OpenPar = ‘(‘

…
 Then construct Regular language R, matching all lexemes for all tokens

 R = Keyword + Identifier + Number + …

 = R1 + R2 + …

• Step 2: Use DFA/NFA to recognize the regular language

• But...good news. you don’t need to implement the algorithms to
transform your regular expressions to DFA/NFA to recognize it

• flex: given regular expressions -> output c code that does lexical analysis (it
internally generates DFA)

Lexical analyzer

REs + priorities + longest matching token rule

= definition of a lexical analyzer

DFA vs. NFA
•  NFAs and DFAs recognize the same set of

languages (regular languages)
–  For a given NFA, there exists a DFA, and vice versa

•  DFAs are faster to execute
–  There are no choices to consider
–  Tradeoff: simplicity

•  For a given language DFA can be exponentially larger than
NFA.

Automating Lexical Analyzer (scanner)
Construction

To convert a specification into code:

1  Write down the RE for the input language

2  Build a big NFA

3  Build the DFA that simulates the NFA

4  Systematically shrink the DFA

5  Turn it into code

Scanner generators

•  Lex and Flex work along these lines

•  Algorithms are well-known and well-understood

Automating Lexical Analyzer (scanner)
Construction

RE→ NFA (Thompson’s construction)

•  Build an NFA for each term

•  Combine them with ε-moves

NFA → DFA (subset construction)

•  Build the simulation

DFA → Minimal DFA

•  Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

•  All pairs, all paths problem

•  Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

Key idea
•  NFA pattern for each symbol & each operator
•  Join them with ε moves in precedence order

RE →NFA using Thompson’s Construction

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5
ε

ε ε

ε

S0 S1
ε S3 S4

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S1 S2
b

S3 S4
c

S0 S5
ε

ε

ε

ε

Example of Thompson’s Construction (con’t)

4.  a (b | c)*

Of course, a human would design something
simpler ...

S0 S1
a

b | c
But, we can automate production of
the more complex one ...

S0 S1
a ε

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

NFA to DFA : Trick

•  Simulate the NFA

•  Each state of DFA

 = a non-empty subset of states of the NFA

•  Start state

 = the set of NFA states reachable through e-moves from
 NFA start state

•  Add a transition S !a S’ to DFA iff
–  S’ is the set of NFA states reachable from any state in S after

seeing the input a, considering ε-moves as well

NFA to DFA : cont..

•  An NFA may be in many states at any time

•  How many different states ?

•  If there are N states, the NFA must be in some
subset of those N states

•  How many subsets are there?

 2^N - 1 = finitely many

NFA to DFA

•  Remove the non-determinism
–  States with multiple outgoing edges due to same input
–  ε transitions

2

4

a

c

start 1

3

b
ε

ε ε

ε
(a*| b*) c*

NFA to DFA (2)

•  Multiple transitions
–  Solve by subset construction
–  Build new DFA based upon the set of states each

representing a unique subset of states in NFA

1 2
a

a
b R= a+ b*

ε-closure(1) = {1} include state “1”
(1,a) ! {1,2} include state “1/2”
(1,b) ! ERROR
(1/2,a) !1/2
(1/2,b) ! 2 include state “2”

start 1 2

a

a
1/2 start b

b

(2,a) ! ERROR
(2,b) ! 2
Any state with “2” in name is a final state

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

a*b*

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

2/3 3

a b

start
1/2/3

a b

a*b*

b

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

B

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

a

b

b

A

4

6 a
a start

ε-closure(1) = {1, 2, 3, 5}

 Create a new state A = {1, 2, 3, 5}

move(A, a) = {3, 6} + ε-closure(3,6) = {3,6}

Create B = {3,6}

move(A, b) = {4} + ε-closure(4) = {4}

move(B, a) = {6} + ε-closure(6) = {6}

move(B, b) = {4} + ε-closure(4) = {4}

move(6, a) = {6} + ε-closure(6) = {6}

move(6, b) ! ERROR

move(4, a|b) ! ERROR

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

State Minimization

•  Resulting DFA can be quite large
–  Contains redundant or equivalent states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

1 2 3
start

a a

b b

Both DFAs accept
b*ab*a

State Minimization (2)

•  Idea – find groups of equivalent states and
merge them
–  All transitions from states in group G1 go to states in

another group G2
–  Construct minimized DFA such that there is 1 state for

each group of states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

Basic strategy: identify
distinguishing transitions

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

DFA Implementation

•  A DFA can be implemented by a 2D table T
–  One dimension is “states”
–  Other dimension is “input symbol”
–  For every transition Si !a Sk define T[i,a] = k

•  DFA “execution”
–  If in state Si and input a, read T[i,a] = k and skip to

state Sk
–  Very efficient

DFA Table Implementation : Example

Implementation Cont ..

•  NFA -> DFA conversion is at the heart of tools
such as flex

•  But, DFAs can be huge

•  In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

