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Source Code Syntax Tree

14243 —— [Parser] ——

e Parsing flat strings into structured data representations is ubiquitous
problem in software.

e Incorrect/buggy parsers lead to junk data and unverified parser
implementations are a common source of security vulnerabilities.

e Good target for formal verification: precise specifications,

error-prone to implement.
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the grammar.
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How do we write (verified) parsers?

e Write the parser manually. Verify it against a one-off specification of
the grammar.
e Implement a parser generator for some class of grammars.

In each development we formalize different notions of formal grammar,
different automata formalisms. What is a reusable core to allow us to
write new verified parsers and parser generators more easily?

What is the right language for implementing verified parsers?



A Language of Grammars and Parsers

Our proposal: Dependent Lambek Calculus (Lambek? ), a
domain-specific type theory for defining formal grammars implementing
verified parsers and formal grammar theory.

e An ordered linear typing foundation for formal grammar theory.
e Where soundness of parsers follows for free from the type discipline.
e Based on a simple denotational semantics.

e Prototype implementation using a shallow embedding of combinator
syntax in cubical Agda.

e Case studies: verification of regex parsing via translation to NFAs
and determinization, as well as hand-written LL(1) parsers.



Soundness and Completness of Parsers

A formal grammar A defines for each string w a set of valid parse trees
[A]w.
A parser for grammar A is a partial function from strings to parse trees.
e Soundness: any parse tree produced by the parser is a valid parse of
the input string
e Completeness: if any parse tree for the input string exists, the parser

succeeds in producing one.

Our approach: soundness follows for free from type discipline.
Completeness requires proof.
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Overview

Dependent Lambek Calculus

e Builds on Lambek’s categorial grammars which define formal
grammars using the structure of monoidal categories.

e \We use a syntax based on non-commutative linear logic, extended
with dependency on non-linear types and indexed inductive linear

types.
Grammars Linear Types
Grammar A Linear type A
Parse of string w wkEM: A
Parser TEM: Ad AL
Parse transformer AFM: A



Finite Grammars

Fix an alphabet &

e For each character ¢ € T a linear base type 'c'

e Non-symmetric tensor product A® B and unit /. Analogues of
sequencing and € in regular expressions

e Nullary and Binary disjunction (0, A& B).



Ordered Linear Typing

Ate: A ANEe : B
a:AFa: A AN (e,e) : Ao B

MFe: A®B M,a:A,b:B,AFe :C
A1, Do, A3k let (a, b) =eine’ : C EO

MpFe:l Al,A3|—e/:C
Dy, Do, A3let () =eine’ : C

Additionally 57 rules

let (ay, ap) = (eq, &) ine’ =e'[er/a1, e/ as]l
ela: AR B] =let (a1, a») =ainel(a1, ap)/al
let ) =Qine =¢€

ela: 11 =let() =ainel(/a]



Why Ordered Linear Typing?

Want to be able to represent A parses of a string, e.g., "cat" as a term

,y:'a',z:'t'Fe: A
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Why Ordered Linear Typing?

Want to be able to represent A parses of a string, e.g., "cat" as a term

t'a',z:'t'Fe: A

a

x:'c',y:tal,z: 't HFx,(y,2)) s 'c'®'a'®'t!
x:'c',y:'al,z: "'y, x,2)):'a'®'c'® 't

,Z 't x, (y,(Z2,2)))  'e'®'a' @'t @'t
x:'c',y:'a',z: "t'"F(y,2) : 'a' ® 't

x:'c',y:

Ordered linearity is what ensures that parsers are sound-by-construction

10



Recursive Grammars

Can encode regular and context-free grammars using inductive linear
types:

data A* : L where
nil : (&%)
cons : T(A — A* — A™)

Introduction rules are given by the constructors, elimination given by the
corresponding fold.

fold: 1A—=1(A—B—oB) =1 (A* - B)

Lambek? includes inductive types specified by any strictly positive
(indexed) linear type expression.

11



Linear function Types

Because the tensor product is not symmetric, we get two different linear
function types A — B and B o— A, which add variables to the left or
right side of the context:

I';A,a: A-e: B ';Abe: A— B ;0 e A
I;AF)N"a.e: A—B I;0,ANFHee : B

';a: A,AHe: B ';AHe: A ;0 Fe : B—A
I;AFA a.e: B—A I;A,0MNFHe'“e: B

12



Automata

To encode automata, we use indexed inductive linear types, where the

indices are non-linear data.

data Trace : (s : Fin 3) — L where

stop : T(Trace 2)

1tol : 7(’a’ —o Trace 1 ——o Trace
1)

1to2 : 1T(’b’ — Trace 2 — Trace
1)

0to2 : 1(’c’ — Trace 2 — Trace
0)

Otol : 7T(Trace 1 — Trace O0)

k : 1((’a’> ® ’b’) — Trace 0)
k (a , b) = 0tol (1tol a (1to2 b
stop))

13



Context-Free Grammars

Context-free grammars can be translated to (mutually) inductive linear
data types. E.g., for balanced parentheses.

data Dyck : L where
nil : 1 Dyck
bal : 1(’(°> — Dyck — )’ — Dyck — Dyck)

with elimination given by its corresponding fold

fold: TA—=>1 (" —o2A—0o"'")' oA—0A) — 1 (Dyck — A)

14



dent Linear Types

Linear types and terms can depend on non-linear data. Allows us to
define two new linear type connectives, indexed versions of conjunction
and disjunction:
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Dependent Linear Types

Linear types and terms can depend on non-linear data. Allows us to
define two new linear type connectives, indexed versions of conjunction

PA
x: X

the linear version of a I types, rules are those of a weak X:

and disjunction:

T'EM: X T;AFe: A[IM/X]

I';AFoMe: @A
x: X

T;Agl—e:@/\ F,X:X;Al,a:A,Agl—e/:C
x: X
T;A01,0, M3 letoxa=eine’ : C

Binary (A @ B) and nullary (0) versions are definable picking the index to
be non-linear booleans.
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Dependent Linear Types

Linear types and terms can depend on non-linear data. Allows us to
define two new linear type connectives, indexed versions of conjunction

& A
x: X

and disjunction:

the linear version of a [ type

I,x: X;AFe: A
T30 Mx.e: gix: X).A

T;AFe: &x: X).A 'EM: X
I'sAke.nM: ALM/x]

Binary (A&B) and nullary (T) versions are definable picking the index to

be non-linear booleans.
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Dependent Linear Types

Final connective: for a linear type A, 1T A is a non-linear type of “pure”
elements of A. Plays a similar role to ! in linear logic or the persistence

modality [ in separation logic.

We make the coercion invisible in the syntax for convenience:

I';-Fe: A F'Fe:TA
F'Fe:TA I';-Fe: A

17



Unrestricted Complexity

Dependency on non-linear data and €p are powerful enough to encode
grammars of arbitrary complexity.

E.g. if P : String — Type is a non-linear type, we can define a grammar
b D w
w:String x: P w

whose w parses are precisely Pw. where [w] is a kind of singleton
grammar for concrete strings:

)=
[c::w]="¢c'"®|w]

Example: for any Turing machine T we can define
Accepts T : String — Type of accepting traces in ordinary dependent
type theory and then lift it to a linear type.

18



2. Formal Grammar Theory and Parsing in Lambek?

19



Defining Parsers

How to implement a parser for a grammar A?

es: TFe:A
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Defining Parsers

How to implement a parser for a grammar A?

e s: T Fe: Atoo strong, represents parsers only for total grammars

that parse every input string

es: The:A®T the type of a partial parser sound but allows for

incompleteness

es: The:A®dA_ where A_ is a “complement grammar” for A,
i.e., they are mutually exclusive AZA- 0

Soundness is by construction, completeness comes from showing
A&ZA- -0

20



Grammar-specific axioms

So far: standard ordered linear logic + inductives 4+ dependency on
non-linear data. We also assume some axioms that don't follow from just
linear type theory (distributivity of & over &, disjointness of

constructors. . . )

To do formal grammar theory, we need one axiom to tell us that we are
parsing finite strings.

o Define Char =P 5 'c'
e And String = Charx

Axiom: String is isomorphic to T.
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Grammar-specific axioms

So far: standard ordered linear logic + inductives 4+ dependency on
non-linear data. We also assume some axioms that don't follow from just
linear type theory (distributivity of & over &, disjointness of

constructors. . . )

To do formal grammar theory, we need one axiom to tell us that we are
parsing finite strings.

o Define Char =P 5 'c'

e And String = Charx

Axiom: String is isomorphic to T. Some consequences: String is
unambiguous, Char is unambiguous, can access the underlying string of a
parse tree.
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Parser for the Dyck Grammar

data Dyck : LinTy where
nil : 1 Dyck
bal : 1(>(°> — Dyck — ’)’ — Dyck — Dyck)

"OO"F bal 11 nil r1 (bal 12 nil r2) : Dyck
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Parser for the Dyck Grammar

data Dyck : LinTy where
nil : 1 Dyck
bal : 1(>(°> — Dyck — ’)’ — Dyck — Dyck)

"OO"F bal 11 nil r1 (bal 12 nil r2) : Dyck
PR
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A Parser for the Dyck Grammar

Dyck Parser

A parser for Dyck is a function
1 (String — Dyck & Dyck-,)

where Dyck & Dyck—-, = 0

Strategy: use an intermediate automaton formalism

23
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A Parser for the Dyck Grammar

Every String can be parsed into a unique trace

T = String = Trace true 0@ Trace false 0

Corollary: (Trace true 0)&(Trace false 0) — 0
The Dyck Grammar is Strongly Equivalent to the Automaton
Dyck = Trace true 0

Strong equivalence is true here but not necessary for the parser. For a
partial parser only need Trace true 0 — Dyck. For completeness only
need weak equivalence.

T —o String —o Trace true 0 @ Trace false 0

—o Dyck @ Trace false 0
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A Parser for Dyck Traces

Looks like an ordinary functional program, but syntactic discipline ensures
soundness.

parse
T(String — &[ n € N ] &[ b € Bool ] Trace b n)
parse nil zero = o true eof
parse nil (suc n) = o false leftovers
parse (cons (o ’(’ a) w) n =
let 0 b tr = parse w (suc n) in
o b (push a tr)
parse (cons (o ’)’ a) w) zero =
o false (unexpected a _)
parse (cons (o ’)’ a) w) (suc n) =

let 0 b tr = parse w n in

o b (pop a tr)

Functions from Dyck to Trace and vice-versa are similarly just functional
programs between trees and lists but satisfying ordered linear discipline.

26



3. Semantics and Implementation
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Semantics: What is a formal grammar?

Fix a finite alphabet L.

e A formal language is a subset of strings over L. Equivalently, a
function String — Prop.

Formal languages provide specifications for recognizers, i.e., is the input
string in a given language. Not sufficient for parsers, where we care
about the reason that the string is in the language, i.e., the parse tree.

Various formalisms (Chomskyan generative grammars, Lambek’s
categorial grammars) define grammars and inductively generate their
parse trees. Our approach (used by e.g., Conal Elliott):

e A formal grammar is a function String — Set

A formal grammar is a “proof-relevant” formal language, it maps a string
to the set of “proofs” that the string is in the language. A
syntax-independent definition of grammar that isn't tied to a particular

formalism.
28



Parse Transformers

Given formal grammars A, B, a parse transformer is a function
HW:StringAW — Bw, i.e., a function from A parses to B parses that

respects the grammatical structure.

This is the category of families indexed by strings Set5**188 which is
very well-behaved: bi-complete, with a biclosed monoidal structure.
Exactly what we need to interpret ordered linear type theory.

29



Denotational Semantics

Definition (Grammar Semantics)
We define the following interpretations by mutual recursion on the
judgments of Lambek? :

1. For each non-linear context I' ctx, we define a set [I7].

2. For each non-linear type '+ X type, and element v € ], we define
a set [X].

3. For each linear type I' = A lin. type and element v € [I'], we define
a formal grammar [A]y. We similarly define a formal grammar [A]~y
for each linear context I'A lin. ctx..

4. For each non-linear term ' M : X and v € [I'], we define an
element [M]y € [X]~.

5. For each linear term I'; A e : A and 7 € [I] we define a parse
transformer from [A]y to [A]y.

And this interpretation validates the equational theory.
30



Denotational Semantics

[c]yw=A{clw=c}

[yw=10 | w=¢e}

[A@ Blyw={(wy, wa, a, b) | wywa = w A a € [Alywi A b € [B]y we}
[A — Blyw = [[[Alyw' — [Bly ww/

[B o~ Alyw = [[Alyw' = [Blyw'w

W/

[[@A]]vw= {(x,a) | xe[X]ynae[A] (v, x)w}

x: X
& Alvw= T[] [AlG, 0w
x: X x€[X]y

[t Aly = [Alve

31



Implementation

We implement Lambek? in cubical Agda by a shallow embedding based
on the semantics:

e Non-linear types just implemented as Agda Type
e Linear types are implemented as String — Type

Benefit: don't need to reimplement dependent type theory(!), can re-use
library functions about graphs, results about monoidal categories

Drawback: the programs aren’t written as LambekP lambda terms, but
instead hand-compiled to combinators analogous to the denotational
semantics Example:

h @ (A ® A)* — A¥)
h nil = nil
h (cons (a1l , a2) as) = cons al (cons a2 (h as))

as combinators becomes h = fold nil (cons o id ® cons o assoc™ 1)

32



4. Future Work
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Other Parsing Algorithms

e WIP on parser for arbitrary LL(1) grammars.
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Other Parsing Algorithms

e WIP on parser for arbitrary LL(1) grammars.

e Derivative-based techniques: The left and right Brzozowski
derivatives of grammar A by a character c¢ are definable in
Lambek? :

1 Cl —0 A A o— 1 Cl
Unclear if the usual rules of derivatives are derivable without
additional axioms

e Context-sensitivity using dependency. For variable binding can define
an indexed inductive grammar Term E where E : List Ident and
type the A constructor as follows:

& "fun' —o Single(x) — '.' —o Term (x :: E) —o Term E

x:ldent

34



Type Systems as Types?

Type systems can be viewed as a formal grammar over abstract syntax
trees. Type checking/inference is the analogue of the parser.

e Can a tree version of Lambek? help us to write verified type
checkers/inference/elaborators?

o What does a tree version of Lambek? even look like? Instead of a
single ® representing concatenation, we have a tensor-like operation
for each untyped term constructor.

e Can we do this over trees that incorporate binding structure (ABTs)?

35



Dependent Lambek Calculus

Grammars Linear Types
Grammar A Linear type A
Parse of string w wkM: A
Parser TEM: Ad A,
Parse transformer AEM: A

Sound-by-construction parsers using dependent ordered linear typing.

Language and examples implemented in Cubical Agda {#

e github.com/maxsnew/grammars-and-semantic-actions

e Dockerized version: https://zenodo.org/records/15049780
Upcoming paper at PLDI 2025
e ArXiv preprint: arxiv.org/abs/2504.03995
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