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Abstract. We present a domain-specific type theory for constructions
and proofs in category theory. The type theory axiomatizes notions of
category, functor, profunctor and a generalized form of natural trans-
formations. The type theory imposes an ordered linear restriction on
standard predicate logic, which guarantees that all functions between
categories are functorial, all relations are profunctorial, and all trans-
formations are natural by construction, with no separate proofs neces-
sary. Important category theoretic proofs such as the Yoneda lemma and
Co-yoneda lemma become simple type theoretic proofs about the rela-
tionship between unit, tensor and (ordered) function types, and can be
seen to be ordered refinements of theorems in predicate logic. The type
theory is sound and complete for a categorical model in virtual equip-
ments, which model both internal and enriched category theory. While
the proofs in our type theory look like standard set-based arguments, the
syntactic discipline ensure that all proofs and constructions carry over
to enriched and internal settings as well.

1 Introduction

Category theory is a branch of mathematics that studies higher-dimensional
typed algebraic structures. Originally developed for applications to homologi-
cal algebra, it was quickly discovered that categorical structures were common
in logic and computer science. Formal systems like logics, type theories and
programming languages typically have sound and complete models given by
notions of structured categories [29, 28, 32]. This Curry-Howard-Lambek corre-
spondence applies to simply typed lambda calculus [28], computational lambda
calculus [32], linear logic [22] dependent type theory [13], and many other type
theories designed based on category-theoretic semantics. The syntax of a type
theory should present an initial object in its category of models, a category-
theoretic reformulation of logical soundness and completeness.

While this research program has been quite successful, category-theoretic
techniques in computer science are sometimes criticized for being overly complex
and hard to learn, especially for computer scientists who do not have a strong
background in pure mathematics. While in some ways this could be remedied
by better introductory materials, in some ways category theory is objectively
complex. In a traditional set-theoretic formulation, notions such as adjoint func-
tors and limits produce a proliferation of “naturality” and “functoriality” side-
conditions that must be discharged. For example, when constructing an adjoint



pair of functors between two categories, a näıve approach would define all of the
data of the action on objects, action on arrows, prove the functoriality of such
actions, as well as construct two families of transformations, prove they are nat-
ural and then finally proving a pair of equalities relating compositions of natural
transformations. Carrying out these proofs explicitly is quite tedious and many
newcomers to are left with the impression that category theory is full of long, but
ultimately trivial constructions. This complexity is compounded when we move
from ordinary category theory to enriched and internal category theory, where
constructions must be additionally proven continuous, monotone, etc, in addi-
tion to natural or functorial. However, these generalizations are often exactly
what is needed for programming language applications; for example, domain-
and metric- and step-index-enriched categories have been used to model recur-
sive programming languages and internal categories have been used to model
parametricity and gradual typing [47, 9, 40, 34].

Fortunately, the tools of category theory itself can be employed to simplify
this complexity, specifically the tools of higher category theory. As an analogy in
differential calculus, when an adept analyst writes down a function, they do not
expand out the ϵ−δ definition of continuity for a function and proceed from first
principles, but rather use certain syntactic principles for defining functions that
are continuous by construction — e.g. that composition of continuous functions
is continuous and that previously defined functions are known to be contin-
uous. Similar principles apply to category theory itself: functors and natural
transformations are closed under composition and whiskering operations, and
experienced category theorists rely on these syntactic principles to eliminate
the tedium of explicit proofs. In the case of category theory, these principles
can be formalized using algebraic structures such as 2-categories, bicategories,
(virtual) double categories and pro-arrow equipments [7, 50, 30, 16], an approach
known as formal category theory. In these structures, rather than defining no-
tions of category, functor and natural transformation from first principles, they
are axiomatized in a manner similar to how a category axiomatizes a notion of
space and homomorphism. Proofs in formal category theory apply to enriched
and internal settings, which are instances of the formal axioms. A downside is
that these algebraic structures are quite complicated, and practitioners typically
employ either an algebraic combinator syntax or a 2-dimensional diagrammatic
language that can be quite beautiful and elegant, but is also somewhat removed
from the traditional formulation of category theory in terms of sets and func-
tions.

In this work, we apply the techniques of categorical logic to define a more
familiar logical syntax for carrying out constructions and proofs in formal cate-
gory theory. We call the resulting theory virtual equipment type theory (VETT)
as (hyperdoctrines of) virtual equipments [30, 16], a particular semantic model
of formal category theory, provide a sound and complete notion of model for the
theory. VETT provides syntax for categories, functors, profunctors, and natural
transformations, which are defined using familiar term syntax and βη reasoning
principles for λ-functions, bound variables, tuples, etc. By adhering to a syn-



tactic discipline, the logic guarantees that all functor terms are automatically
functorial, and all natural transformation terms are natural. More specifically,
the syntax for transformations is a kind of indexed, ordered linear lambda calcu-
lus, where the indexing ensures that transformations are correctly natural and
the ordering and linearity ensure that the proofs are valid in a large class of en-
riched and internal categories, such as enrichment in a non-symmetric monoidal
category. VETT provides an alternative to algebraic and string-diagram syn-
taxes for working with virtual equipments, similar to how the lambda calculus
provides an alternative to categorical combinators and string diagram calculi for
cartesian closed categories.

The syntax of VETT is an indexed, ordered linear, proof-relevant variant of
predicate logic over a unary type theory. Just as a predicate logic has a notion of
type, term, relation and implication, VETT is based on four analogous category
theoretic concepts: categories, functors, profunctors and natural transformations
of profunctors. Categories are treated like types, and the unary functors we con-
sider in this paper are each represented by a term whose type is a category and
whose one free variable ranges over a category. The analogue of a relation is a
profunctor (defined below), which is written like a set with free category vari-
ables. Like the restriction to unary functors, we restrict to profunctors with two
free variables. The logic is proof-relevant in that the implications of relations are
generalized to natural transformations of profunctors, and we use a λ-calculus
notation to describe these “proof terms”. This analogy to predicate logic can be
made formal: any construction in VETT can be erased to a corresponding con-
struction or proof in predicate logic, as sets, functions, relations, and implication
of relations define a (somewhat degenerate) virtual equipment.

While the restricted syntax developed in this paper does not express some
important concepts such as functor categories or opposite categories, the re-
striction is natural in that it corresponds exactly to virtual equipments, a well-
understood notion of model that can express a great deal of fundamental results
and constructions in category theory [39, 42]. Moreover, we can work around
these unary/binary restrictions to some extent by viewing the type theory as a
domain-specific language embedded in a metalanguage. For example, while we
cannot talk about functor categories, we can state a theorem that quantifies
over functors using the meta-language’s “external” universal quantifier (which
does not have automatic functoriality/naturality properties). To support this,
VETT includes a third layer, an extensional dependent type theory in the style
of Martin-Löf type theory. All of our ordered predicate logic judgments are also
indexed by a context from this dependent type theory, and the type theory
includes universe types for categories, functors, profunctors and natural trans-
formations. This allow us to formalize theorems the object logic is too restrictive
to encode, analogous to 2-level [45, 2] or indexed type theories [25, 14, 46, 27].

While we emphasize the applications to enriched and internal category theory
in this work, there is potential for more direct application to programming lan-
guage semantics. Ordinary predicate logic is the foundation for proof-theoretic
presentations of logical relations, such as Abadi-Plotkin logic for parametricity



and LSLR and Iris for step-indexed logical relations proofs [36, 18, 26]. We con-
jecture that VETT might similarly serve as the foundation for a logic of ordered
structures, which abound in applications: rewriting and approximation relations
can both be modeled as orderings and logical relations involving these structures
are proven to respect orderings; operational logical relations must be downward-
closed and approximation relations should satisfy transitivity. Just as LSLR and
Iris release the user from the syntactic burden of explicit step-indexing, VETT
may be used to release the user from the syntactic burden of proving downward-
closure or transitivity side-conditions. Additionally, VETT may serve as the
basis of a future domain specific proof assistant for category theoretic proofs.
To pilot-test this, we have formalized the syntax of VETT in Agda 2.6.2.2, us-
ing the rewrite mechanism to make VETT’s substitution and β-reduction rules
definitional equalities.3 We have used this lightweight implementation to check
a number of examples.

Basics of Profunctors. While we assume the reader has some background
knowledge of category theory, we briefly define profunctors, which are not in-
cluded in many introductory texts. Recall that a category C has a collection of
objects and morphisms with identity and composition, and a functor F : C→ D

is a function on objects and a function on morphisms that preserves identity and
composition. A category can be thought of as a generalization of a preordered
set, which has a set of elements and a binary relation on its objects satisfying
reflexivity and transitivity. A category is then a proof-relevant preorder, where
morphisms are the proofs of ordering, and the reflexivity and transitivity proofs
must satisfy identity and unit equations. A functor is then a proof-relevant mono-
tone function. Given categories C and D, a profunctor R from C to D, written
R : C ↛ D is a functor R : Cop × D → Set. Because a profunctor outputs a
Set rather than a proposition, it is itself a proof-relevant relation. Thinking of
categories as proof-relevant preorders, functoriality says that the profunctor is
downward-closed inC and upward-closed inD. Given profunctors R,S : C↛ D,
a homomorphism from R to S is a natural transformation, which in the pre-
ordered setting is simply an implication of relations.

Profunctors are very useful for formalizing category theory, but an additional
reason we make them a basic concept of VETT is that they allow us to give a
universal property for the type of “morphisms in a categoryC”. This is analogous
to how the J elimination rule for the identity type in Martin-Löf type theory
gives a universal property for morphisms in a groupoid (the special case of a
category where all morphisms are invertible) [24, 6, 44]. The reason profunctors
are useful for this purpose is that, for any category C, HomC : C ↛ C is
a profunctor. On preorders this is just the preorder’s ordering relation itself.
Moreover, the hom profunctor is the unit for a composition of profunctors R⊙S
which is defined as a co-end. The composition of profunctors is a generalization
of the composition of relations, and just as the equality relation is the identity
for the composition of relations, the hom profunctor is the identity for this
composition. The unit law for the hom profunctor can be seen as a “morphism

3 https://github.com/maxsnew/virtual-equipments/blob/master/agda/STC.agda



induction” principle, analogous to the “path induction” used in homotopy type
theory (though in this paper we consider only ordinary 1-dimensional categories,
not higher generalizations).

Outline. In Section 2 we introduce the syntax of VETT. In Section 3 we
demonstrate how to use our syntax for formal category theory. In Section 4, we
develop some model theory for VETT, including a sound and complete notion
of categorical model and sound interpretation in virtual equipments modeling
ordinary, enriched and internal category theory. In Section 5, we discuss related
type theories and potential extensions.

2 Syntax of VETT

In Figure 1 we give a table summarizing the relationship between the judgments
and connectives of higher-order predicate logic with our ordered variant. Due
to the incorporation of variance, some unordered concepts generalize to multi-
ple different ordered notions. For instance, covariant and contravariant presheaf
categories generalize the power set. Further, because we only have binary rela-
tions rather than relations of arbitrary arity, we have only restricted forms of
universal and existential quantification which come combined with implications
and conjunctions.

Higher-Order Logic Virtual Equipment Type Theory

Set X Category C
X × Y C× D

1 1
PX P+X and P−X

{(x, y) ∈ X × Y |R(x, y)}
∑

α:C;β:D R

Function f(x : X) : Y Functor/Object α : C ⊢ A : D
Relation R(x, y) Profunctor/Set α : C;β : D ⊢ R

R ∧Q R×Q
⊤ 1

∀x.P ⇒ Q P ▷∀α:CQ and Q ∀α:C◁P

∃x.P ∧Q P
∃α:C
⊙ Q

x =X y α→C β
Proof ∀−→α .R1 ∧ · · · ⇒ Q Nat. Trans./Element α1, x1 : R1(α1, α2), . . . ⊢ t : Q

Fig. 1. Analogy between Higher-Order Logic and VETT Judgments and Connectives

The syntactic forms of VETT are given in Figure 2. First, we have cate-
gories, which are analogous to sorts in a first-order theory. We have M a base
sort, product and unit sorts, as well as the graph of a profunctor and the nega-
tive and positive presheaf categories. Next, objects a, b, c are the syntax for the
functors between categories. We call them objects rather than functors, because



in type-theoretic style, a functor is viewed as a “generalized object” parameter-
ized by an input variable α : C. Next, sets P,Q,R are the syntax for sets. These
sets denote profunctors, i.e., a categorification of relations. Similar to functors,
rather than writing profunctors as functions Co ×D → Set, we write them as
sets with a contravariant variable α : C and a covariant variable β : D. The sets
we can define are the Hom-set, the tensor and internal hom, as well as products
of sets, profunctors applied to two objects and elements of positive and nega-
tive presheaves. Finally we have elements of sets, which correspond to natural
transformations of multiple inputs, where again we view natural transformations
valued in a profunctor as generalized elements of profunctors.

After these forms we have types and terms, which represent the meta-language
that we use to talk about categories/profunctors/natural transformations. In ad-
dition to standard dependent type theory with Π and Σ and identity types, we
have universes of categories, functors, profunctors and natural transformations.

Finally we have several forms of context which are used in the theory. The
contexts Γ of term variables with their types are as usual; we write Γ type context
to indicate that a context is well-formed. We name the remaining contexts after
the judgements that they are used by. The set contexts Γ ⊢ Ξ set context, which
will be used to type-check sets, contain object variables with their categories.
The two forms of set context are α : C, containing one variable that can be used
both contravariantly and covariantly, and α : C;β : D, containing a contravari-
ant variable α and covariant variable β. Finally, the transformation contexts
Γ ⊢ Φ trans. context contain element variables with their sets, alternating with
those sets’ object variables with their categories. A typical Φ has the shape

α1 : C1, x1 : R1(α1, α2), α2 : C2, x2 : R2(α2, α3), . . . , Rn(αn, αn+1), αn+1 : Cn+1

and represents the composition of the “relations” R1, R2, R3, . . . , Rn. We write
d−(Φ) for the first category variable in Φ (which we regard as the negative or
contravariant position), d+(Φ) for the last category variable in Φ (which we
regard as the positive or covariant position), and Φ1 . Φ2 for the append of
two transformation contexts where the last variable in Φ1 is equal to the first
variable in Φ2. Formal inductive definitions are in the appendix, but intuitively:

d−(α1 : C1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : Cn+1) = α1 : C1

d+(α1 : C1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : Cn+1) = αn+1 : Cn+1

(Φ1, β : D) . (β : D, Φ2) = Φ1, β : D, Φ2

Next, we overview our basic judgement forms. We have

– Categories: Γ ⊢ C Cat, where Γ type context.
– Objects/functors: Γ | α : C ⊢ a : D, where Γ ⊢ C Cat and Γ ⊢ D Cat. Ob-

jects are typed with an input object variable α : C and an output category
D; in the semantics, objects are modeled as functors C→ D.

– Sets/profunctors: Γ | Ξ ⊢ S Set, where Γ ⊢ Ξ set context. A set S is typed
with respect to a set context Ξ to describe its covariant/contravariant depen-
dence on some input objects. Sets are semantically modeled as profunctors.



Categories C,D,E ::= ⌊M⌋ | C×D | 1 |
∑

α;β P | P−
C | P+

C

Objects a, b, c ::= α |Ma | (a, b) | () | πia | (a−, a+, s) | π−a | π+a | λα : C.R

Sets P,Q,R ::= a→C b | P
∃β
⊙ Q | P ▷∀β Q | S ∀α◁R | 1 | P ×Q

|M(a; b) | b ∈ a | a ∋ b
Elements s, t, u ::= x | ind→(α.t, b1, s, b2) | idb | ind⊙(x.β.y.r; s) | (s, b, t) | s ▷a t

| λ▷(x, α).s | s a◁ t | λ◁(α, x).s | πis | (s1, s2) | () | πea |Mb

Type A,B,C ::= . . . | SmallCat | Cat | FunCD | ProfCD | ∀α : C.R
Term L,M,N ::= . . . | ⌈C⌉ | λα : C.a | λ(α : C;β : D).R | λα.t

Type Context Γ,∆ ::= · | Γ,X : A
Set Context Ξ,Z ::= α : C | α : C;β : D

Trans. Context Φ, Ψ ::= α : C | Φ, x : P, β : D

Fig. 2. VETT Syntactic Forms

– Elements/natural transformations: Γ | Φ ⊢ s : R, where Γ ⊢ Φ trans. context
and Γ | Φ ⊢ R Set. A transformation s has a context Φ of transformation
variable and a single set output R. To be well formed, the context and set
must be parameterized by the same contravariant and covariant object vari-
ables. To ensure this, we use a coercion operation Φ from transformation
contexts to set contexts that erases everything in the context but the left-
most and right-most object variables (α : C = α : C and Φ = d−(Φ); d+(Φ)).

– Meta-language types and terms: Γ ⊢ A Type and Γ ⊢M : A as in standard
dependent type theory.

The variable rules for objects and elements are

Γ | α : C ⊢ α : C Γ | α : C, x : R, β : D ⊢ x : R

As in linear logic, the latter rule applies only when the context contains a single
set R. All syntactic forms typed in context admit an action of substitution. For
types and terms, this is as usual. Objects α : C ⊢ a : D can be substituted for
object variables β : D in other objects. We can also substitute objects into sets,
that is, if we have a set P parameterized by a contravariant variable α : C and a
covariant variable β : D, then we can substitute objects a : C and b : D for these
variables P [a/α; b/β]. This generalizes the ordinary precomposition of a relation
by a function. Semantically this is the “restriction” of a profunctor along two
functors, which is just composition of functors if a profunctor is viewed as a
functor to Set. Modeling this operation as a substitution considerably simplifies
reasoning using profunctors. Finally we have the action of substitution on ele-
ments/natural transformations. First, we can substitute elements/natural trans-
formations for the set variables in elements, denoting the composition of natural
transformations. Second, an element is also parameterized by a contravariant
and a covariant category variable α;β. We can think of natural transformations
as polymorphic in the categories involved, and so when we make a transforma-
tion substitution, we also instantiate the polymorphic category variables with
objects. The full syntactic details of substitution are included in the appendix.



2.1 Category Connectives

In this section we discuss some connectives for constructing categories, which
are specified by introduction and elimination rules in Figure 3 (the βη equal-
ity and substitution rules are included in the appendix). The introduction and
elimination rules make use of functors, profunctors, and natural transforma-
tions. First we introduce the additives: the unit category 1 and product category
C×D have the usual introduction and elimination rules defining functors to/from
them. Next, we introduce the graph of a profunctor

∑
α;β P . Just as a relation

R : A×B → Set can be viewed as a subset {(a, b) ∈ A×B|R(a, b)}, any profunc-
tor P : Co

− ×C+ → Set can be viewed as a category with a functor to C− ×C+

(no op), specifically a two-sided discrete fibration. In set-based category theory,
the objects are triples (a−, a+, s : P (a−, a+)) and morphisms from (a−, a+, s)
to (a′−, a

′
+, s

′) are pairs of morphisms f− : a− → a′− and f+ : a+ → a′+ such
that P (id, f+)(s) = P (f−, id)(s

′). With various choices of P , this connective can
be used to define the arrow category, slice category and comma category con-
structions. In our syntax we define it as the universal category C equipped with
functors to C− and C+ and a natural transformation to P .

Lastly, we define the negative and positive presheaf categories P−C and
P+D. These are given a syntax suggestive of the fact that they generalize the
notion of a powerset, and so can be thought of as “power categories”. Note that
we include a restriction that the input category is small, which is an inductively
defined by saying all base categories are small, the unit is small, product of small
categories is small and the graph of a profunctor over small categories is small.
Notably, the presheaf categories themselves are not small. The negative presheaf
category is defined by its universal property that a functor into it D → P−C

is equivalent to a profunctor Co × D → Set. The introduction rule constructs
an object of the negative presheaf category from such a profunctor and the
elimination rule inverts it. We use the notation p ∈ a for the elements of the
induced profunctor. The positive presheaf category is then the dual. In ordinary
set-theoretic category theory the negative presheaf category is the usual presheaf
category SetC

o

, and the positive presheaf category is the opposite of the dual
presheaf category (SetD)o.

2.2 Set Connectives

Next, in Figure 4, we cover the connectives for the sets/profunctors, which clas-
sify elements/natural transformations (the β/η-rules are in the appendix). First,
the unit set is our syntax for the profunctor of morphisms of a category C, which
is well-formed when given two objects of the same category. Its introduction and
elimination rules are analogous to the usual rules for equality in intensional
Martin-Löf type theory. The introduction rule is the identity morphism (reflex-
ivity) and the elimination rule is an induction principle: we can use a term of
s : a→C b by specifying the behavior when s is of the form idα in the form of
a continuation α.t. Like the J elimination rule for equality in Martin-Löf type
theory, P must be “fully general”, i.e. well-typed for variables α and β; this is



Unit:
Γ ⊢ 1 Cat

Γ | α : C ⊢ () : 1

Product:
Γ ⊢ C1 Cat C2 Cat

Γ ⊢ C1 ×C2 Cat

Γ | α : C ⊢ a1 : C1 Γ | α : C ⊢ a2 : C2

Γ | α : C ⊢ (a1, a2) : C1 ×C2

Γ | α : C ⊢ a : C1 ×C2

Γ | α : C ⊢ πia : Ci

Graph of a profunctor:
Γ | α : C; β : D ⊢ P Set

Γ ⊢
∑
α;β

P Cat

Γ | α : C ⊢ a− : C− Γ | α : C ⊢ a+ : C+ Γ | α : C ⊢ s : P [a−/α; a+/β]

Γ | α : C ⊢ (a−, a+, s) :
∑

α:C−;β:C+

P

Γ | α : C ⊢ a :
∑

α:C−;β

P

Γ | α : C ⊢ π−a : C−

Γ | α : C ⊢ a :
∑

α;β:C+

P

Γ | α : C ⊢ π+a : C+

Γ | α : C ⊢ a :
∑
α;β

P

Γ | α : C ⊢ πea : P [π−a/α;π+a/β]

Negative Presehaf:

Γ ⊢ C Cat C Small

Γ ⊢ P−
C Cat

Γ | d−
Ξ ⊢ a : C Γ | d+

Ξ ⊢ p : P−
C

Γ | Ξ ⊢ a ∈ p Set

Γ | α : C; β : D ⊢ R : Set

Γ | β : D ⊢ λα : C.R : P−
C

Positive Presehaf:

Γ ⊢ D Cat D Small

Γ ⊢ P+
D Cat

Γ | d−
Ξ ⊢ p : P+

D Γ | d+
Ξ ⊢ a : D

Γ | Ξ ⊢ p ∋ a Set

Γ | α : C; β : D ⊢ R : Set

Γ | α : C ⊢ λβ : D.R : P+
D

Fig. 3. Category Conectives

because for distinct variables α and β, α→C β denotes the unit, which has a
universal property, but a→C b denotes a restriction of a unit, which in general
does not. Those familiar with linear logic as in e.g. [37] might expect a more gen-
eral rule, with the continuation t typed in a context Φl . Φr, and Φl . Φ . Φr

as the context of the conclusion of the rule. Because of dependency, this is not
necessarily well-formed in cases where the endpoints a and b of a→C b are not
distinct variables. However, the instances of this more general rule that do type
check are derivable from our more restricted rule using right/left-hom types.

The tensor product of sets is a kind of combined existential quantifier and

monoidal product, which we combine into a single notation P
∃β
⊙ Q, where β

is the covariant variable of P and the contravariant variable of Q. Then the
covariant variable of the tensor product is the covariant variable of Q and the
contravariant variable similarly comes from P . In ordinary category theory, this
is the composition of profunctors, and is defined by a coend of a product. We
require that the variable β quantifies over a small category D, as in general this
composite doesn’t exist for large categories. The introduction and elimination are
like those for a combined tensor product and existential type: the introduction
rule is a pair of terms, with an appropriate instantiation of β, and the elimination
rule says to use a term of a tensor product, it is sufficient to specify the behavior
on two elements typed with an arbitrary middle object β.

Next, we introduce the contravariant (P ∀α◁R) and covariant (R▷∀α P ) homs
of sets, which are different from each other because we are in an ordered logic.
These are a kind of universally quantified function type, where the universally



quantified variable must occur with the same variance in domain and codomain.
In the contravariant case, it occurs as the contravariant variable in both, and
vice-versa for the covariant case. To highlight this, the notation for the con-
travariant dependence puts the quantified variable on the left of the triangle, as
contravariant variables occur to the left of the covariant variable, and similarly
the covariant hom has the quantified variable on the right. Then the covariant
variable of the contravariant hom set is the covariant variable of the codomain
and, and the contravariant variable of the hom set is the covariant variable
of the domain, as the two contravariances cancel. The covariant hom is dual.
Semantically, in ordinary category theory these are known as the hom of pro-
functors and are constructed using a combination of an end and a function set.
The two connectives have similar introduction and elimination rules in the form
of λ terms abstracting over both the object of the category and the element of
the set, and appropriate application forms. To keep with our invariant that the
variable occurrences occur left to right in the term syntax in a manner matching
the context, we write the covariant application in the usual order s ▷a t where
the function is on the left and the argument is on the right, and the contravari-
ant application in the flipped order. We also write the instantiating object as a
superscript to de-emphasize it, as in practice it can often be inferred.

Finally, we have the cartesian unit and product sets, which are analogous to
the normal unit and product of types. The most notable point to emphasize is
that in the formation rule for the product, the two subformulae should have the
same covariant and contravariant dependence (as with linear logic, some con-
structions can syntactically use a variable more than once and still be “linear”).

2.3 Type Connectives

Finally, we briefly describe the connectives for the “meta-logic”, which extends
Martin-Löf type theory with Π/Σ and extensional identity types (with their
standard rules). We use extensional identity types so that the description of
models is simpler, but intensional identity types could be used instead. The types
we include are universes for the object categorical logic: types of small categories
and locally small categories, functors, profunctors and natural transformations.
The rule for the types of small categories and (large) categories are very similar:
any definable category defines an element of type Cat, and any element of that
type can be reflected back into a category. The only difference for SmallCat is
that the categories involved additionally satisfy C Small. Again we elide the βη
principles, which state that ⌈−⌉ and ⌊−⌋ are mutually inverse. Since every small
categoryC Small is a categoryC Cat, there is a definable inclusion function from
SmallCat to Cat and the βη properties ensure that this is a monomorphism.

Next, we have the types of all functors and profunctors between any two
fixed categories. The introduction and elimination forms are those for unary and
binary function types respectively, where metalanguage terms of type FunCD
can be used to construct an object/functor, while metalanguage terms of type
ProfCD can be used to construct a set/profunctor.



Unit/morphism set:

Γ | d−
Ξ ⊢ a1 : C

Γ | d+
Ξ ⊢ a2 : C

Γ | Ξ ⊢ a1 →C a2 Set

Γ | β : D ⊢ a : C

Γ | β : D ⊢ ida : a→C a

Γ | α : C; β : C ⊢ P Set
Γ | α : C ⊢ t : P [α/α;α/β]

Γ | Φ ⊢ s : a→C b

Γ | Φ ⊢ ind→(α.t, A, s, B) : P [a/α; b/β]

Tensor product:
D Small

Γ | d−
Ξ; β : D ⊢ P Set

Γ | β : D; d
+
Ξ ⊢ Q Set

Γ | Ξ ⊢ P
∃β:D
⊙ Q Set

Γ | d+
Ψs ⊢ b : D

Γ | Ψs ⊢ s : P [b/β]
Γ | Ψt ⊢ t : Q[b/β]

Γ | Ψs . Ψt ⊢ (s, b, t) : P
∃β:D
⊙ Q

Γ | Φl . x : P, β : D, y : Q . Φr ⊢ t : R

Γ | Φm ⊢ s : P
∃β
⊙ Q

Γ | Φl . Φm . Φr ⊢ ind⊙(x.β.y.t; s) : R

Right hom:

d
+
Ξ Small

Γ | d+
Ξ;α : C ⊢ R Set

Γ | d−
Ξ;α : C ⊢ P Set

Γ | Ξ ⊢ R▷
∀α:C

P Set

Γ | Φ, x : R,α : C ⊢ t : P

Γ | Φ ⊢ λ
▷
(x : R,α : C).t : R▷

∀α
P

Γ | Φf ⊢ s : R▷
∀α:C

P

d
+
Φa ⊢ a : C

Φa ⊢ t : R[a/α]

Γ | Φf . Φa ⊢ s ▷
a
t : P [a/α]

Left hom:

d
−
Ξ Small

Γ | α : C; d
−
Ξ ⊢ R Set

Γ | α : C; d
+
Ξ ⊢ P Set

Γ | Ξ ⊢ P
∀α:C

◁R Set

Γ | α : C, x : R,Φ ⊢ t : P

Γ | Φ ⊢ λ
◁
(α : C, x : R).t : P

∀α
◁R

Γ | d−
Φa ⊢ a : C

Γ | Φa ⊢ s : R[a/α]

Γ | Φf ⊢ t : P
∀α:C

◁R

Γ | Φa . Φf ⊢ s
a
◁ t : P [a/α]

Cartesian unit and products:
Γ | Ξ ⊢ 1 Set Γ | Φ ⊢ () : 1

Γ | Ξ ⊢ R Set
Γ | Ξ ⊢ S Set

Γ | Ξ ⊢ R × S Set

∀i ∈ {1, 2}. Γ | Φ ⊢ si : Ri

Γ | Φ ⊢ (s1, s2) : R1 × R2

Γ | Φ ⊢ s : R1 × R2

Γ | Φ ⊢ πis : Ri

Fig. 4. Set Connectives

Finally we include a type ∀α : C.P which we call the set of “natural ele-
ments” of P . The name comes from the case that P is of the form F (α)→G(α)
in which case the type ∀α : C.F (α)→G(α) can be interpreted as the set of
all natural transformations from F to G. More generally this is modeled as an
end, and we notate it with a universal quantifier (just as we do for the quanti-
fiers in left/right hom types). Syntactically, ∀α.P is a meta-language type that
represents elements/natural transformations with exactly one free variable.

3 Formal Category Theory in VETT

To demonstrate what formal category theory in VETT looks like, we demon-
strate some basic definitions and theorems. While it is well known that much
category theory can be formalized in virtual equipments, we show these exam-
ples to demonstrate how the VETT syntax gives a more familiar syntax to these
constructions, while still avoiding the need for explicit naturality and functorial-
ity side conditions. We have mechanized some of the results in this section (e.g.
Lemma 2 and Lemma 3 and the maps in Lemma 4) in Agda.4

4 https://github.com/maxsnew/virtual-equipments/blob/master/agda/Examples.agda



Γ ⊢ SmallCat

Γ ⊢ C Small

Γ ⊢ ⌈C⌉ : SmallCat

Γ ⊢ M : SmallCat

Γ ⊢ ⌊M⌋ Small Γ ⊢ Cat

Γ ⊢ C Cat

Γ ⊢ ⌈C⌉ : Cat

Γ ⊢ M : Cat

Γ ⊢ ⌊M⌋ Cat

Γ ⊢ C Cat Γ ⊢ D Cat

Γ ⊢ FunCD Type

Γ | α : C ⊢ A : D

Γ ⊢ λα : C.A : FunCD

Γ | α : C ⊢ A : D Γ ⊢ M : FunDE

Γ | α : C ⊢ MA : E

Γ ⊢ C Cat Γ ⊢ D Cat

Γ ⊢ ProfCD Type

Γ | α : C; β : D ⊢ R Set

Γ ⊢ λα : C; β : D.R : ProfCD

Γ ⊢ M : ProfCD

Γ | d−
Ξ ⊢ A : C

Γ | d+
Ξ ⊢ B : C

Γ | Ξ ⊢ MAB Set

Γ | α : C ⊢ P Set

Γ ⊢ ∀α : C.P Type

Γ | α : C ⊢ t : P

Γ ⊢ λα.t : ∀α.P
Γ ⊢ M : ∀α.P Γ | β : D ⊢ a : C

Γ | β : D ⊢ M
a
: P [a/α]

Fig. 5. Type Connectives

First, we using the elimination for the unit set, we can see that all construc-
tions are (pro-)functorial:

Construction 1 For any small category C, we can construct natural elements

1. Identity: ∀α.α→C α
2. Composition: ∀α1.α1 → α2 ▷

∀α2 α1 → α2 ▷
∀α3 α1 → α3

3. Functoriality: for any F : FunCD, ∀α1.α1 → α2 ▷
∀α2 F (α1)→ F (α2).

4. Profunctoriality: for any R : ProfCD if D is small then
∀α1.α1 → α2 ▷

∀α2 Rα2β2 ▷
∀β2 β2 → β1 ▷

∀β1 Rα1β1

Reflexivity and transitivity generalize the corresponding properties of equality,
with the lack of symmetry being a key feature of the generalization. In addition,
we can prove that the (pro)-functoriality axioms commute with the composi-
tion proof by the η principle for the unit. (Pro-)Functoriality generalizes the
statement that all functions and relations respect equality. Naturality is more
complex to state, and it is a statement about the proofs so it has no analogue in
ordinary higher-order logic. The following version is stated for any profunctor,
with the usual case of naturality arising when Rαβ = Fα→CGβ.

Lemma 1 (Naturality). For any t : ∀α : C.R(α;α), by composing with pro-
functoriality, we can construct terms α1, f : α1 →C α2, α2 ⊢ lcomp(f, tα2) and
rcomp(tα1 , f) : R(α1;α2) that are both equal to ind→(f, t).

Next, we turn to some of the central theorems of category theory, the Yoneda
and Co-Yoneda lemmas. Despite being ultimately quite elementary, these are no-
toriously abstract. In VETT, we view these as ordered generalizations of some
very simple tautologies about equality. For instance, the Yoneda lemma gener-
alizes the equivalence between the formulae ∀x.∀y.x = y ⇒ Py and Px.

Lemma 2. Let α : C and π : P+C. Then

1. (Yoneda) The profunctor α→C α
′ ▷∀α

′
π ∋ α′ is isomorphic to π ∋ α

2. (Co-Yoneda) The profunctor π ∋ α′ ∃α
′

⊙ α′ → α is isomorphic to π ∋ α



The proofs both follow from the unit elimination rule, which is essentially the
Yoneda lemma—the two cases of showing (1) is an isomorphism are precisely
the β and η rules for the unit.

Next, we have the “Fubini” theorems, which are analogous to simple theorems
relating tensor and hom types in ordered logic, and whose proofs are

Lemma 3 (Fubini). The following isomorphisms hold when the corresponding
profunctors are well typed.

1. P (α;β)
∃β
⊙(Q(β; γ)

∃γ
⊙ R(γ; δ)) ∼= (P (α;β)

∃β
⊙ Q(β; γ))

∃γ
⊙ R(γ; δ)

2. (P (δ;β)
∃β
⊙ Q(β; γ)) ▷∀γ S(α; γ) ∼= P (δ;β) ▷∀β Q(β; γ) ▷∀γ S(α; γ)

3. S(γ; δ) ∀γ◁(P (γ;β)
∃β
⊙ Q(β;α)) ∼= S(γ; δ) ∀γ◁P (γ;β) ∀β◁Q(β;α)

4. Q(δ; γ) ▷∀γ(S(β; γ) ∀β◁P (β;α)) ∼= (Q(δ; γ) ▷∀γ S(β; γ)) ∀β◁P (β;α)
5. ∀α.P (α;β) ▷∀β Q(α;β) ∼= ∀β.Q(α;β) ∀α◁P (α;β)

Proof. Straightforward, for instance the forward direction of (1) is given by
λα.λ▷(x, δ).ind⊙(p.β.y.ind⊙(q.γ.r.((p, β, q), γ, r); y);x)

Next, we can prove that two definitions of an adjunction are equivalent:

Lemma 4. For R : FunDC and L : FunCD, the following are in bijection:

1. An isomorphism of profunctors (Lα→D β) ∼= (α→CRβ)
2. A unit η : ∀α.α→CR(Lα) and co-unit ε : ∀β.L(R(β))→D β satisfying tri-

angle identities.

Proof. Given the forward homomorphism lr, we can construct η = λα.lrα ▷Lα idα.
Given the unit we can reconstruct the forward homomorphism using comp (com-
position) and fctor (functoriality) from Construction 1 as
compα ▷R(Lα) ηα ▷Rβ(fctor(R)Lα ▷β f).

We can define weighted limits, which as special cases include ordinary limits
and Kan extensions.

Definition 1. For a functor D : FunJC and a profunctor W : ProfKJ, the
limit of D weighted by W is (if it exists) a functor limWD : FunKC with an
isomorphism α→C(lim

WD )k ∼=Wkj ▷∀j(α→CDj)

This generalizes the usual definition that a morphism into a limit is a cone over
the diagram (α→CDj) to be parameterized by a weight Wkj. Then we can
prove the well-known theorem that right adjoints preserve (weighted) limits:

Theorem 1. If limWD exists and is a limit and R : FunCC′ has a left adjoint
L, then λκ.R((limWD )κ) is the limit of λj.R(Dj) weighted by W .

Proof.

γ→R((limWD )κ) ∼= Lγ→(limWD )κ ∼=Wkj ▷∀j Lγ→Dj ∼=Wkj ▷∀j γ→R(Dj)



This is a high level proof in terms of isomorphisms that may be written in
VETT. The first two steps are the instantiation of assumptions (adjointness,
weighted limits). The last step uses the fact that a natural isomorphisms lift to
natural isomorphism of homs of profunctors. The construction of this isomor-
phism illustrates how naturality need not be proved explicitly in VETT. For
any ϕ : ∀α.R′αβ ▷∀β Rαβ and ψ : ∀γ.Sγβ ▷∀β S′γβ we can construct a natural
transformation ϕ ▷ ψ : ∀γ.(Rαβ ▷∀β Sγβ) ▷∀αR′αβ ▷∀β S′γβ as
λγ.λ▷(f, α).λ▷(r, β).ψγ ▷β(f ▷β(ϕα ▷β r)). Furthermore if ϕ and ψ have inverses,
then ϕ−1 ▷ ψ−1 is the inverse of ϕ ▷ ψ.

4 Semantics

Next, we develop the basics of the model theory for VETT. First, we demon-
strate that a hyperdoctrine of virtual equipments provides a sound and complete
notion of categorical model. Then we instantiate this general notion of model to
show that the VETT can be interpreted in ordinary category theory as well as
enriched, internal and indexed notions.

First, we can model the judgmental structure of the unary type theory and
predicate logic in certain virtual equipments [30, 16], i.e., virtual double cate-
gories with restrictions. We briefly recount the structure present in a virtual
double category, but see [16] for a precise definition of the composition rules for
2-cells and functor of virtual double categories. Our notion here differs from [16]
in several ways to more closely match our judgmental structure: (1) we require
that restrictions are given as coherent structure rather than mere existence (2)
we include a notion of “small” object and (3) we don’t yet require the existence
of unit horizontal arrows, as these are modeled by a connective rather than
judgmental structure.

Definition 2 (Virtual Equipment). A virtual equipment V consists of

1. A category Vo of “objects and vertical arrows”
2. A chosen subset of the objects Vs ⊆ Vo of “small objects”
3. A set Vh of “horizontal arrows” with source and target functions s, t : Vh →

Vo
2

4. Sets of 2-cells of the following form, with appropriate “multi-categorical”
notions of identity and composition:

C0 · · · Cn

ϕ

D0 D1

Rnp

f g

S
p

R0p

We say that the 2-cell ϕ has S as codomain, the sequence R0 . . . Rn as domain
and call f and g the left and right “frames”, or that ϕ is framed by f and g.



We say a virtual double category has split restrictions when for any horizontal
arrow R : C ↛ D and vertical arrows f : C ′ → C and g : D′ → D there is a
chosen horizontal arrow R(f, g) : C ′ ↛ D′ with a cartesian 2-cell to R framed
by f, g and these chosen cartesian lifts are functorial in f, g.

A functor of virtual equipments is a functor of the virtual double categories
that additionally preserves the restrictions and smallness of objects.

In the presence of restrictions, every 2-cell can be represented as a “globular”
2-cell where the left and right frame are identities. For example the 2-cell ϕ above
can be represented as one with the same domain but whose codomain is S(f, g).
This property is crucial for the completeness of our semantics as we only include
a syntax for these globular terms. Each component of this definition has a direct
correspondence to a syntactic structure in VETT. The objects of Vo models
the category judgment and the morphisms model the functor judgment. The
set Vh models the profunctor judgment. A composable string R0 · · ·Rn models
the profunctor contexts. The 2-cells correspond to the natural transformation
judgment where we have taken the restriction S(F,G) of the codomain.

To model the dependent type theory and fact that the categorical judgments
are all typed under a context Γ with an action of substitution, we use a variation
on Lawvere’s notion of hyperdoctrine for modeling predicate logic[29]:

Definition 3 (Hyperdoctrine of Virtual Equipments). A hyperdoctrine of
virtual equipments (HVE) is a pair of a category with families C and a functor
V (−) : Co → vEq to the category of virtual equipments and functors.

Categories with families C model dependent type theory [20] and for each se-
mantic context Γ , V Γ models the VETT judgments in context Γ , with the
functoriality modeling the fact that all of these judgments admit a well-behaved
action of substitution.

An HVE is then precisely the structure corresponding to the judgments and
actions of substitution in VETT.

Construction 2 (Syntactic Model) The syntax of VETT with any choice of
which subset of connectives are included presents an HVE.

Proof. Straightforward, defining the category of families using the dependent
type structure and the virtual equipment structure having (α-equivalence classes
of) syntactic categories as objects, functors/sets as vertical/horizontal arrows
and interpreting compositions/restrictions as substitutions. The biggest gap is
in the definition of the 2-cells. A 2-cell from
(α1 : C1;α2 : C2 ⊢ R1), (α2 : C2;α3 : C3 ⊢ R2), . . . to (β1 : D1;β2 : D2 ⊢ S)
with frames α1 : C1 ⊢ b1 : D1 and αn : Cn ⊢ b2 : D2 is given by a term
x1 : R1, x2 : R2 . . . ⊢ s : S[b1/β1; b2/β2]. Composition is defined by substitution.

Then the connectives of VETT each precisely correspond to a universal con-
struction of structures in an HVE. The Π,Σ, Id types correspond to their stan-
dard semantics in a CwF and the types of categories, functors etc as repre-
senting objects for the virtual equipment structures. Products of categories are



interpreted as products in the vertical category, and products of sets as prod-
ucts in the category of pro-arrows and 2-cells. The units, tensor and covariant
and contravariant homs are modeled by the universal properties of the same
names, as described for instance in [41]. The graph of a profunctor is modeled
by tabulators [23]. Finally, the covariant and contravariant presheaf categories
can be described as a weakening of the definition of a Yoneda equipment from
[17] to virtual double categories. More detailed descriptions of these universal
properties are included in the appendix. Then we can package up the soundness
and completeness of this notion of categorical model in the following modular
initiality theorem.

Theorem 2 (Initiality). The syntax of VETT with almost any choice of con-
nectives presents an HVE that is initial in the category of HVEs with the chosen
instances of the universal properties and functors that preserve such chosen in-
stances. The only exception is that if units are included, then contravariant and
covariant hom sets must be included as well.

Proof. It is straightforward to extend the construction 2 for any connective mod-
ularly, with the exception that the unit relies on the presence of hom sets in order
to satisfy the “distributivity” requirement that its elimination can occur in any
context. Then we can construct the unique morphism to any HVE by straight-
forward induction on syntax.

Now that we have a category-theoretic notion of model, we give some model
construction theorems that can be used to justify our intuitive notion of seman-
tics in (enriched, internal, indexed) category theory. First, we can extend any
virtual equipment to an HVE as follows:

Construction 3 Given a virtual equipment V, we can construct a functor V− :
Set → vDblr by defining the objects of VΓ to be functions Γ → Vo, and similarly
for morphisms and 2-cells with all operations given pointwise.

Then to define a model of VETT with a collection of connectives it is sufficient
to construct a virtual equipment with the corresponding universal properties.

Construction 4 Fix a cardinal κ. The virtual equipment Catκ is defined to
have as objects locally κ-small categories, small objects as κ-small categories,
vertical morphisms as functors, horizontal arrows as functors Co ×D → κSet
and 2-cells as morphisms of profunctors. Restriction of profunctors is given by
composition, which is strictly associative and unital. CatU has objects satisfying
the universal properties of all connectives in VETT.

More generally, categories internal to, enriched in and/or indexed by suffi-
ciently nice categories define a virtual equipment that model the connectives
of VETT. We highlight one example from the literature that is highly general:
Shulman’s enriched indexed categories [42]. Shulman’s construction defines a
virtual double category of large and small V-categories for any pseudofunctor
V : So → MonCat where S is a category with finite products. He gives ex-
amples that show that this subsumes ordinary internal, enriched and indexed



categories for suitable choices of V, as well as more general categories that can
be thought of as both indexed and enriched. This is slightly weaker then what we
require: to have split restrictions, we need that V be a strict functor, not merely
a pseudo-functor. This is analogous to the situation for dependent type theory,
where syntactic substitution is strictly associative, but semantic substitution is
typically given by pullback, which is only associative up to unique isomorphism.
We leave strictification theorems to future work.

Construction 5 (([42])) Given any functor V : So → SymMonCat such that S
and V have sufficiently well-behaved (indexed) κ-products, then there is a virtual
equipment V − Cat whose objects are locally κ-small V-categories, small objects
are κ-small V-categories etc. This virtual equipment has objects satisfying all of
the universal properties needed for a model of VETT.

5 Related and Future Work

We now compare VETT with other calculi for formal category theory.
Riehl and Verity [39] use a formal language of virtual equipments to prove re-

sults valid for ∞-categories without concrete manipulation of model categories.
They formalize this language as a theory in Makkai’s framework of first-order
logic with dependent sorts (FOLDS). While this previous work has the same
models as VETT, we believe that the syntax we propose in this paper formal-
izes informal arguments more directly, as shown in Section 3. This is because
FOLDS approach approach is entirely relational, whereas we formalize concepts
like restriction of a profunctor or composition of natural transformations as
functional operations (substitution). In particular, this means that our calculus
requires only vertically degenerate squares (elements/natural transformations)
as a “user-facing” notion, with general squares occurring only in the admissible
substitution operations.

The coend calculus [31] is an informal syntax for manipulating profunctors
involving ends and coends; an extension of VETT to treat profunctors of many
variables of different variances may provide a formal treatment of it.

Myers [33] provides a string diagram calculus for double categories and pro-
arrow equipments, generalizing string diagrams for monoidal categories. These
are an alternative approach to type theoretic calculi, with the string diagrams
typically making tensor products simpler to work with, while a type theoretic
calculus like SCT makes the closed structure P ▷∀αQ simpler to work with by
using bound variables.

One alternative to proarrow equipments is to axiomatize the bicategory of
categories, profunctors and natural transformations rather than the virtual dou-
ble category of categories, functors, profunctors and natural transformations.
An abstract structure along these lines is a Cartesian bicategory [12]. Frey [21]
describes some preliminary work on a proof system for Cartesian bicateogires.
This calculus is more general than VETT in that their profunctors may have
0, 1 or more covariant or contravariant variables, but they do not have a term



syntax or equational theory for the natural transformations/elements, and Carte-
sian bicategories do not have functors and restriction of profunctors by functors.
Semantically, Cartesian bicategories are less general than virtual equipments be-
cause in general the set of functors between two categories can only be recovered
from the set of profunctors if the codomain category is Cauchy complete, in
which case functors are equivalent to adjoint pairs of profunctors.

Our work in this paper fits broadly into a line of work on directed dependent
type theories, a type theory where the identity type is interpreted as morphisms
in a (possibly ∞-)category. In directed type theories based on a bisimplicial
model [38, 11, 49, 48], morphism types are defined using an interval object, like
in cubical type theory [8, 15, 5, 4], and universal properties like “morphism in-
duction” are an internally definable property of certain types. Other type the-
ories [35, 1] define morphism types via an induction principle, corresponding to
the lifting properties of certain kinds of fibrations of categories. While these pre-
vious works can express some constructions on Cat that are not expressible in
VETT, because VETT is more restricted, VETT contrariwise has more mod-
els, for instance categories enriched in non-cartesian monoidal categories, so the
theorems that are provable in VETT apply in more settings.

Finally, some variations on double categories have been used to model the
structure of certain program logics. GTT [34] is a logic for vertically thin pro-
arrow equipments, i.e., pro-arrow equipments where the functor and natural
transformation judgments are posetal. This calculus is quite different from ours
in that the horizontal morphisms are terms of a programming language, and
so they are not presented as relations with co-variant and contravariant vari-
ables, and the equipment structure is modeled by explicit coercions rather than
by syntactic substitution of vertical arrows in horizontal arrows. Another sim-
ilar calculus is System P [19] which is an internal language of reflexive graph
categories, which are like double categories without horizontal composition.

In future work, VETT could incorporate functor categories by generalizing
the unary type theory of functors to functors of many variables, in which case
ordinary λ calculus can be used to define functor categories as function types, and
incorporate multi-variable profunctors as in [21]. Similarly, ideas from coeffects
and enriched category theory could be used for defining opposite categories [43,
10].
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A Details of VETT Syntax and Syntactic Metatheory

A.1 Contexts and Substitutions

In Figure 6 we include the formation rules and definitions of the three kinds
of contexts that are used in VETT. In Figure 7 we give definitions for well-
typedness of the corresponding three kinds of substitutions.

These definitions involve several operations d±Φ, Φ and Φ . Ψ on contexts
(and their functorial lift to substitutions) that we now define.

Definition 4. We define operations d± that project out the covariant and con-
travariant boundary of a set context. This can be typed with the admissible rule

Γ ⊢ Φ trans. context

Γ ⊢ d±Φ set context
(*)



Γ type context TyCtxForm · type context MtTyCtx

Γ type context Γ ⊢ A Type

Γ,X : A type context
TyCtxExt

Γ type context

Γ ⊢ Ξ set context
BoundaryForm

Γ ⊢ C Cat

Γ ⊢ α : C set context
BoundarySingle

Γ ⊢ C Cat Γ ⊢ D Cat

Γ ⊢ α : C;β : D set context
BoundaryDbl

Γ type context

Γ ⊢ Φ trans. context
SetCtxForm

Γ ⊢ C Cat

Γ ⊢ α : C trans. context
SetCtxMt

Γ ⊢ Φ trans. context Γ | d+Φ;β : D ⊢ R Set

Γ ⊢ Φ, x : R, β : D trans. context
SetCtxExt

Fig. 6. Contexts

This is defined as

d±(α : C) = α : C

d−(Φ, x : R,Ψ) = d−Φ

d+(Φ, x : R,Ψ) = d−Ψ

This operation extends to the substitutions with admissible rule

Γ | Ψ ⊢ ϕ :: Φ

Γ | d±Ψ ⊢ d±ϕ :: d±Φ
(*)

defined as

d±(a/α) = a/α

d−(ϕ, t/x, ψ) = d−ϕ

d+(ϕ, t/x, ψ) = d+ψ

Note that d±Φ will always be a set context with a single variable α : C—we
exploit the fact that we have these singleton set contexts to avoid introducing
a separate syntactic class of category contexts α : C and substitutions between
them.



Term Substitution γ, δ ::= · | γ,M/X
Object Substitution ξ, ζ ::= a/α | a/α; b/β

Transformation Substitution ϕ, ψ ::= a/α | ϕ, s/x, ψ

∆ type context Γ type context

∆ ⊢ γ :: Γ
TermSubstFormation

∆ ⊢ · :: · TermSubstMt

∆ ⊢ γ :: Γ ∆ ⊢M : A[γ]

∆ ⊢ γ,M/X :: Γ,X : A
TermSubstExt

Γ ⊢ Z set context Γ ⊢ Ξ set context

Γ | Z ⊢ ξ :: Ξ
BoundarySubstFormation

Γ | α : C ⊢ b : D
Γ | α : C ⊢ b/β :: β : D

BoundarySubstSingle

Γ | d−Ξ ⊢ a : C Γ | d+Ξ ⊢ b : D
Γ | Ξ ⊢ a/α; b/β :: (α : C;β : D)

BoundarySubstDbl

Γ ⊢ Ψ trans. context Γ ⊢ Φ trans. context

Γ | Ψ ⊢ ϕ :: Φ
ElementSubstFormation

Γ | β : C ⊢ a : C

Γ | β : C ⊢ a/α : (α : C)
ElementSubstMt

Γ | Ψ ⊢ ϕ :: Φ d+Ψ = d−Ψ ′Γ | Ψ ′ ⊢ t : R[d+ϕ; b/β] Γ | d+Ψ ′ ⊢ b : D
Γ | Ψ ⊢ ϕ, t/x, b/β :: (Φ, x : R, β : D)

ElementSubstExt

Fig. 7. Substitution



Definition 5. We define the operation of restricting a set context to both sides
of its boundary with admissible typing

Γ ⊢ Φ trans. context

Γ ⊢ Φ set context
(*)

and definition

α : C = α : C

Φ, x : R,Ψ = d−Φ; d+Ψ

The extension to substitutions has admissible typing

Γ | Ψ ⊢ ϕ :: Φ

Γ | Ψ ⊢ ϕ : Φ
(*)

and definition

b/β = b/β

ϕ = d−ϕ; d+ϕ otherwise

Finally, we define the operation of “horizontal composition” of set contexts
Φ . Ψ and its functorial lift ϕ . ψ.

Definition 6. We define horizontal composition of transformation contexts with
the admissible typing rule

Γ ⊢ Φ trans. context Γ ⊢ Ψ trans. context d+Φ = d−Ψ

Γ ⊢ Φ . Ψ trans. context
(*)

as follows

Φ . α : C = Φ

Φ . (Ψ, x : R,α : C) = (Φ . Ψ), x : R,α : C

And we extend this to an operation on substitutions with the admissible rule

Γ | Ψ ⊢ ϕ : Φ Γ | Ψ ′ ⊢ ϕ′ : Φ′ d+ϕ = d−ϕ′

Γ | Ψ . Ψ ′ ⊢ ϕ . ϕ′ :: Φ . Φ′ (*)

Defined as follows

ϕ . a/α = ϕ

ϕ . (ψ, s/x, a/α) = (ϕ . ψ), s/x, a/α

Lemma 5 (Horizontal Category of Contexts/Substitutions). Horizontal
composition of contexts is associative (when defined)

(Φ . Ψ) . Σ = Φ . (Ψ . Σ)



and unital with identity for C given by the single category variable context α : C:

α : C . Φ = Φ = Φ . β : D

when d−Φ = α : C and d+Φ = β : D.

These properties extend to the horizontal composition of element substitu-
tions:

ϕ . (ψ . σ) = (ϕ . ψ) . σ

where the identity is the single variable substitution:

a/α . ϕ = ϕ = ϕ . b/β

when d−ϕ = a/α and d+ϕ = b/β.

Next, we define the actions of substitutions on terms. We elide the obvious
action of term substitutions γ and include only the more unusual substructural
substitutions.

Definition 7 (Substitution Actions). For any Γ | α : C ⊢ a : D and Γ | β :
D ⊢ b : E, we define Γ | α : C ⊢ b[a/β] : E by recursion on b:

β[a/β] = a

(M b)[a/β] =M (b[a/β])

(b1, b2)[a/β] = (b1[a/β], b2[a/β])

(πib)[a/β] = πib[a/β]

()[a/β] = ()

(π±b)[a/β] = π±b[a/β]

(b−, b+, s)[a/β] = (b−[a/β], b+[a/β], s[a/β])

(λα.R)[a/β] = λα.R[a/β]



Simultaneously, for Γ | Ψ ⊢ ϕ : Φ and Γ | Φ ⊢ s : R we define
Γ | Ψ ⊢ s[ϕ] : R[ϕ] by recursion on s:

x[a/α, t/x, b/β] = t

M b[a/α] =M b[a/α]

ind→(α.t, b1, s, b2)[ϕ] = ind→(α.t, b1[d
−ϕ], s[ϕ], b2[d

+ϕ])

(idb)[a/α] = idb[a/α]

ind⊙(x.β.y.r; s)[ϕl . ϕm . ϕr] = ind⊙(x.β.y.r[ϕl, x/x, β/β . β/β, y/y, ϕr]; s[ϕm])

(s, b, t)[ϕs . ϕt] = (s[ϕs], b[d
+ϕs], t[ϕt])

(s ▷a t)[ϕf . ϕa] = s[ϕf ] ▷
a[d+ϕf ] t[ϕa]

(λ▷(x, α).s)[ϕ] = λ▷(x, α).s[ϕ, x/x, α/α]

(s a◁ t)[ϕa . ϕf ] = s[ϕf ]
a[d−ϕf ]◁ t[ϕa]

(λ◁(α, x).s)[ϕ] = λ◁(α, x).s[α/α, x/x, ϕ]

(πis)[ϕ] = πis[ϕ]

(s1, s2)[ϕ] = (s1[ϕ], s2[ϕ])

()[ϕ] = ()

Several rules assume the substitution is in a particular form, such as the tensor
elimination which expects an input context ϕs . ϕt. The fact that the context can
be uniquely decomposed in a well-typed way follows from an inversion principle
(Lemma 6) for well-typed substitutions.

And finally, for Γ | Ξ ′ ⊢ ξ : Ξ and Γ | Ξ ⊢ P Set, we define Γ | Ξ ′ ⊢ P [ξ] Set
by recursion on P :

(M ab)[ξ] =M (a[d−ξ]) (b[d+ξ])

(a→C b)[ξ] = a[d−ξ]→C b[d
+ξ]

(P
∃β
⊙ Q)[ξ] = P [d−ξ;β/β]

∃β
⊙ P [β/β; d+ξ]

(R▷∀α P )[ξ] = R[d+ξ;α/α] ▷∀α P [d−ξ;α/α]

(Q ∀α◁P )[ξ] = Q[α/α; d+ξ] ∀α◁P [α/α; d−ξ]

1[ξ] = 1

(P1 × P2)[ξ] = P1[ξ]× P2[ξ]

Lemma 6 (Inversion).

1. If Φ ⊢ ψ :: (α : C) then Φ = β : D for some D and ψ = a/α where
β : D ⊢ a : C.

2. If Φ ⊢ ψ :: Ψ1 . Ψ2, then there exists unique Φ1, Φ2, ψ1, ψ2 such that Φ =
Φ1 . Φ2 and Φ1 ⊢ ψ1 :: Ψ1 and Φ2 ⊢ ψ2 : Ψ2 and ψ = ψ1 . ψ2.

A.2 Equational Theory

Next we present the βη rules that generate the equational theory of the terms. In
keeping with the extensional style of the type theory, we do not present explicit



transitivity, congruence, or transport rules, but rather consider these as inherent
to the notion of equality. This can be formalized by modeling the terms of our
type theory as a quotient inductive inductive type [3]. We elide the types on the
β rules, as they can be inferred from the shape of the term, but include them
for clarity on the η rules.

A.3 Generalized Unit Elimination

The unit elimination rule presented in Section 2 is more restrictive than universal
property of a unit in a virtual double category that we use in the semantics. So
in order for our calculus to be complete for virtual equipments with units, we
need to show that the more general unit elimination principle is admissible and
satisfies the correct βη rules.

The more general rules are as follows

Φ[α/α−] . Ψ [α/α+] ⊢ t : P [α/α−;α/α+]

Φ, x : α− → α+, Ψ ⊢ indΦ;Ψ
→ (α.t;x) : P

UnitElim

(indΦ;Ψ
→ (α.t;x))[ϕ, idα, ψ] = t[ϕ . ψ]

Φ, x : α− → α+, Ψ ⊢ s : P
Φ, x : α− → α+, Ψ ⊢ s = indΦ;Ψ

→ (α.s[α/α−, idα/x, α/α+];x) : P

The rule is more general because it allows the elimination of an input of
the unit type with non-trivial contexts Φ, Ψ surrounding it, whereas the rule
presented earlier would only allow this elimination if x were the only variable.
We did not include this more general rule as a basic inference rule because it
requires an additional explicit substitution for the context Φ, x : α− → α+, Ψ ,
which would require making the substitutions part of the basic syntax. In the
presence of hom types, we can prove this more general elimination is admissible,
because the judgment

Φ, x : α− → α+, Ψ ⊢ s : P

is in natural bijection with the judgment

α−, x : α− → α+, α+ ⊢ s : Φ ▷ P ◁ Ψ

where Ψ ▷P ◁Φ (note the reversal of order) is a type constructed by recursion on
Φ and Ψ using uses the hom types. The function applications for the hom types
then provide a more lightweight way to incorporate the explicit substitution into
the definition of the type theory.



⌊⌈C⌉⌋ = C
SmallCatβ

Γ ⊢M : SmallCat

Γ ⊢ ⌈⌊M⌋⌉ =M : SmallCat
SmallCatη

⌊⌈C⌉⌋ = C
Catβ

Γ ⊢M : Cat

Γ ⊢ ⌈⌊M⌋⌉ =M : Cat
Catη

(λα.b) a = b[a/α]
Fctorβ

Γ ⊢M : FunCD

Γ ⊢M = λα.M α : FunCD
Fctorη

(λαβ.P ) a b = P [a/α; b/β]
Profβ

Γ ⊢M : ProfCD

Γ ⊢M = λαβ.M αβ : ProfCD
Profη

(λα.s)a = s[a/α]
NatEltβ

Γ ⊢M : ∀α.P
Γ ⊢M = λα.M a : ∀α.P

NatEltη

(λα.R) ∈ a = R[a/α]
NegPresheafβ

Γ | β : D ⊢ p : P−
C

p = λα.p ∈ α
NegPresheafη

(λβ.R) ∋ b = R[b/β]
NegPresheafβ

Γ | α : C ⊢ p : P+
D

p = λβ.p ∋ β
PosPresheafη

π−(a−, a+, s) = a−
Graphβ−

π+(a−, a+, s) = a+
Graphβ+

πe(a−, a+, s) = s
Graphβe

Γ | α : C ⊢ b :
∑

β−;β+

P

Γ | α : C ⊢ b = (π−b, π+b, πeb) :
∑

β−;β+

P
Graphη

Γ | α : C ⊢ a : 1

Γ | α : C ⊢ a = () : 1
1η

πi(a1, a2) = ai
×β

Γ | α : C ⊢ a : D1 ×D2

Γ | α : C ⊢ a = (π1a, π2a) : D1 ×D2

×η

Fig. 8. βη Equality for type and object connectives



(λ▷(x, α).s) ▷a t = s[t/x, a/α]
CovHomβ

Γ | Φ ⊢ s : R▷∀α P
Γ | Φ ⊢ s = λ▷(x, α).s ▷α x

CovHomη

s a◁(λ◁(α, x).t) = t[a/α, s/x]
ConHomβ

Γ | Φ ⊢ t : P ∀α◁R

Γ | Φ ⊢ t = λ◁(α, x).x α◁ t : P ∀α◁R
ConHomη

(ind→(α.t, a, ida, a)) = t[a/α]
Unitβ

Γ | α1 : C, z : α1 →C α2, α2 : C ⊢ s : R
Γ | α1 : C, z : α1 →C α2, α2 : C ⊢ s = ind→(α.s[α/α1; idα/z, α/α2], α1, z, α2) : R

Unitη

ind⊙(x.β.y.r; (s, b, t)) = t[s/x; b/β; t/y]
Tensorβ

Γ | Φ, z : P
∃β
⊙ Q,Ψ ⊢ s : R

Γ | Φ, z : P
∃β
⊙ Q,Ψ ⊢ s = ind⊙(x.β.y.s[(x, β, y)/z]; s) : P

∃β
⊙ Q

Tensorη

Φ ⊢ s : 1
Φ ⊢ s = () : 1

1η

πi(s1, s2) = si
×β

Φ ⊢ s : P ×Q

Φ ⊢ s = (π1s, π2s) : P ×Q
×η

Fig. 9. βη Equality for set connectives



Definition 8 (Generalized Unit Elimination). We define indΦ;Ψ
→ (α.t;x) by

induction on Φ/Ψ .

indα−;α+
→ (α.t;x) = ind→(α.t, α−, x, α+)

indα−;Ψ,y,β
→ (α.t;x) = (indα−;Ψ

→ (α.λ▷(y, β).t;x)) ▷β y

indβ,y,Φ;Ψ
→ (α.t;x) = y β◁(indα−;Ψ

→ (α.λ◁(β, y).t;x))

Lemma 7 (Generalized Unit Elim βη). The admissible generalized unit
elimination satisfies the described βη equations.

Proof. By induction on Φ/Ψ First, β

– If Φ = Ψ = α

(ind→(α.t, α−, x, α+))[α, idα, α] = ind→(α.t, α, id,α)

= t (Unitβ)

– If Φ = α and Ψ = Ψ, y, β

((indα−;Ψ
→ (α.λ▷(y, β).t;x)) ▷β y)[ϕ, idα, ψ, s/y, b/β] = ((indα−;Ψ

→ (α.λ▷(y, β).t;x)[[ϕ, idα, ψ]]) ▷
b s)

(Definition)

= (λ▷(y, β).t[ϕ, ψ] ▷b s)
(Induction)

= t[ϕ, ψ, s/y, b/β]
(Homβ)

– Φ = β, y, Φ case is similar to previous.

Next η.

– Φ = α− and Ψ = α+:

indα−;α+
→ (α.s[α/α−, idα/x, α/α+];x) = ind→(α.s[α/α−, idα/x, α/α+], α1, x, α2)

Which is equal to s by the primitive unit η.
– Φ = α− and Ψ = Ψ, y, β:

s = λ▷(y, β).s ▷β y (Hom η)

= (indα−;Ψ
→ (α.λ▷(y, β).s[idα/x];x)) ▷

β y (Induction)

= indΦ;Ψ,y,β
→ (α.s[idα/x];x) (Definition)

B Details of Formal Category Theory Examples

Next, we provide some further details for some of the examples of the formal
category theory constructions and theorems from Section 3.



Definition 9 (Synthetic Composition/Functoriality). We provide the def-
initions of the terms in Construction 1

1. Identity id = λα.idα
2. Composition comp = λα1.λ

▷(f, α2).ind→(α.g ▷∀α3 g, α1, f, α2)
3. Functoriality fctor(F ) = λα1.λ

▷(f, α2).ind→(α.idF α, α1, f, α2)
4. Profunctoriality

prof(R) = λα1.λ
▷(f, α2).ind→(α.λ▷(r, β1).λ

▷(g, β2).r
α◁(ind→(β.λ◁(α, r).r, β1, g, β2)), α1, f, α2)

We can also define left and right composition for profunctors by applying the
profunctorial action to a reflexivity on one side or the other:

lcomp(R) = λα1.λ
▷(f, α2).λ

▷(r, β).prof(R)α1 ▷α2 f ▷β r ▷β idβ

rcomp(R) = λα.λ▷(r, β1).λ
▷(g, β2).prof(R)

α ▷α idα ▷
β1 r ▷β2 g

Associativity and unit follow by βη for unit and homs.

Lemma 8 (Naturality). For any t : ∀α : C.R(α;α),

λα1.λ
▷(f, α2).lcomp(R)α1 ▷α2 f ▷α2 tα2 = λα1.λ

▷(f, α2).rcomp(R)α1 ▷α1 tα1 ▷α2 f

Proof. Expanding the definitions and applying β reductions, both are equal to
λα1.λ

▷(f, α2).ind→(α.tα, α1, f, α2)

Lemma 9 (Yoneda, Co-Yoneda). Let αo : C and π : P+C. Then
(Yoneda) The profunctor α′ →C α▷

∀α′
α′ ∈ π is isomorphic to α ∈ π

(Co-Yoneda) The profunctor α→ α′ ∃α
′

⊙ α ∈ π is isomorphic to α ∈ π

Proof. We show Yoneda in detail.

– The left-to-right homomorphism is defined as

M = λα.λ▷(ϕ, π).ϕ ▷α idα

– The right-to-left homomorphism is defined as

N = λπ.λ▷(x, α).λ▷(f, α).′x π◁ ind→(α.λ◁(π, x).x, α′, f, α)

– First, right-to-left-to-right:

λπ.λ▷(x, α).Mα ▷π(Nπ ▷α x) = λπ.λ▷(x, α).Mα ▷π(λ▷(f, α′).x π◁ ind→(α.λ◁(π, x).x, α′, f, α))

= λπ.λ▷(x, α).(λ▷(f, α′).x π◁ ind→(α.λ◁(π, x).x, α′, f, α)) ▷α idα

= λπ.λ▷(x, α).x π◁ ind→(α.λ◁(π, x).x, α′, idα, α)
(covhomβ)

= λπ.λ▷(x, α).x π◁(λ◁(π, x).x) (unitβ)

= λπ.λ▷(x, α).x (contrahomβ)



– Left-to-right-to-left

λα.λ▷(ϕ, π).Nπ ▷α(Mα ▷π ϕ)

= λα.λ▷(ϕ, π).λ▷(f, α′).(Mα ▷π ϕ) π◁ ind→(α.λ◁(π, x).x, α′, f, α)

= λα.λ▷(ϕ, π).λ▷(f, α′).(ϕα ▷α idα)
π◁ ind→(α.λ◁(π, x).x, α′, f, α)

= λα.λ▷(ϕ, π).λ▷(f, α′).ind→(α.((ϕα ▷α idα)
π◁ ind→(α.λ◁(π, x).x, α, idα, α)), α

′, f, α)
(unit η)

= λα.λ▷(ϕ, π).λ▷(f, α′).ind→(α.((ϕα ▷α idα)
π◁ λ◁(π, x).x), α′, f, α)

(unit β)

= λα.λ▷(ϕ, π).λ▷(f, α′).ind→(α.((ϕα ▷α idα)), α
′, f, α) (contrahom β)

= λα.λ▷(ϕ, π).λ▷(f, α′).(ϕα
′
▷α f) (unit η)

= λα.λ▷(ϕ, π).ϕ (covhom η)

Lemma 10 (Fubini). We show two of the Fubini cases in detail:

1. S(γ; δ) ∀γ◁(P (γ;β)
∃β
⊙ Q(β;α)) ∼= S(γ; δ) ∀γ◁P (γ;β) ∀β◁Q(β;α)

2. ∀α.P (α;β) ▷∀β Q(α;β) ∼= ∀β.Q(α;β) ∀α◁P (α;β)

Proof. 1. This is a form of Currying isomorphism, as the λ term makes clear:
– Left to Right

λα.λ▷(h, δ).λ◁(β, q).λ◁(γ, p).(p, β, q) γ◁ h

– Right to Left

λα.λ▷(k, δ).λ◁(γ,w).ind⊙(p.β.q.q
β◁ p γ◁ k;w)

– Left to Right to Left

λα.λ▷(h, δ).λ◁(γ,w).ind⊙(p.β.q.(p
γ◁ q β◁(λ◁(β, q).λ◁(γ, p).(p, β, q) γ◁ h));w)

= λα.λ▷(h, δ).λ◁(γ,w).ind⊙(p.β.q.(p
γ◁ (λ◁(γ, p).(p, β, q) γ◁ h));w)

(contrahomβ)

= λα.λ▷(h, δ).λ◁(γ,w).ind⊙(p.β.q.((p, β, q)
γ◁ h);w) (contrahomβ)

= λα.λ▷(h, δ).λ◁(γ,w).w γ◁ h (tensorη)

= λα.λ▷(h, h). (contrahomη)

– Right to Left to Right

λα.λ▷(k, δ).λ◁(β, q).λ◁(γ, p).(p, β, q) γ◁(λ◁(γ,w).ind⊙(p.β.q.p
γ◁ q β◁ k;w))

= λα.λ▷(k, δ).λ◁(β, q).λ◁(γ, p).ind⊙(p.β.q.p
γ◁ q β◁ k; (p, β, q))

= λα.λ▷(k, δ).λ◁(β, q).λ◁(γ, p).p γ◁ q β◁ k

= λα.λ▷(k, δ).λ◁(β, q).q β◁ k

= λα.λ▷(k, δ).k



2. This isomorphism relates left and right homs. Unlike the previous cases, the
isomorphism is of types, not sets/profunctors.

– Left to right

λX.λβ.λ◁(α, p).Xα ▷β p

– Right to left

λY.λα.λ▷(p, β).p α◁ Y β

– Left to right to left

λX.λα.λ▷(p, β).p α◁(λβ.λ◁(α, p).Xα ▷β p)β

= λX.λα.λ▷(p, β).p α◁ (λ◁(α, p).Xα ▷β p) (nat.elt.β)

= λX.λα.λ▷(p, β).Xα ▷β p (contrahomβ)

= λX.λα.Xα (contrahomη)

= λX.X (nat.elt.η)

– The other case is similar.

Lemma 11 (Equivalent Definitions of Adjoints). We show that given a
morphism of profunctors

∀α.Lα→ β ▷∀β α→Rβ

we can extract a unit natural transformation η : ∀α.α→R(Lα) and vice-versa.

Proof. The construction is exactly the ordinary proof but formalized in VETT
syntax. Given the morphism of profunctors M , we define the unit by evaluating
at the identity:

∀α.Mα ▷α idα

and given the unit η, we can define a morphism of profunctors by composing the
unit with the functorial lift of the input:

∀α.f ▷∀β comp(ηα, fctor(R)(f))

That this is an isomorphism follows by a similar argument to the proof of the
Yoneda lemma.

C Details of Semantics

In this section, we provide the full descriptions of the universal properties in a
virtual equipment corresponding to each connective in VETT.

Definition 10 (Universal Properties for Category Connectives). Let V
be a virtual equipment.



1. Let C be a small object, then a contravariant presheaf object P−C is an object
with natural isomorphism Vo(A,P−C) ∼= {R ∈ Vh | s(R) = C ∧ t(R) = A}

2. Let C be a small object, then a covariant presheaf object P+C is an object
with natural isomorphism Vo(A,P+C) ∼= {R ∈ Vh | t(R) = C ∧ s(R) = A}

3. Let R be a horizontal arrow, then a tabulator
∫
R is an object with natural

isomorphism Vo(A,
∫
R) ∼=

∑
f :Vo(A,s(R))

∑
g:Vo(A,t(R)) V2(·; f ; g;R)

4. A nullary product is an object 1 with natural isomorphism Vo(A, 1) ∼= 1

5. A binary product of B and C is an object B × C with natural isomorphism
Vo(A,B × C) ∼= Vo(A,B)× Vo(A,C)

Definition 11 (Universal Properties for Set Connectives). Let V be a
virtual equipment.

1. A unit UC for an object C is a horizontal arrow UC with s(UC) = t(Uc) = C

with natural isomorphism V2(
−→
P ,Uc,

−→
Q ; f ; g;R) ∼= V2(

−→
P ,

−→
Q ; f ; g;R)

2. A tensor of horizontal arrows P and Q where t(P ) = s(Q) is a horizontal
arrow P ⊙ Q with s(P ⊙ Q) = s(P ) and t(P ⊙ Q) = t(Q) with natural

isomorphism V2(
−→
R,P ⊙Q,

−→
S ; f ; g;T ) ∼= V2(

−→
R,P,Q,

−→
S ; f ; g;T ).

3. A covariant hom of P and Q where t(P ) = t(Q) is a horizontal arrow P ▷
Q with s(P ▷ Q) = s(Q) and t(P ▷ Q) = s(P ) with natural isomorphism

V2(
−→
R ; f ; id;P ▷ Q) ∼= V2(

−→
R,P ; f ; id;Q)

4. A contravariant hom of P and Q where s(P ) = s(Q) is a horizontal arrow
P ◁ Q with s(P ◁ Q) = t(Q) and t(P ◁ Q) = t(P ) with natural isomorphism

V2(
−→
R ; id; g;P ◁ Q) ∼= V2(Q,

−→
R ; id; g;P )

5. A nullary product for an object C is a horizontal arrow 1C with s(1C) =

t(1C) = C with natural isomorphism V2(
−→
P ; f ; g; 1C) ∼= 1

6. A binary product of horizontal arrows P and Q where s(P ) = s(Q) and
t(P ) = t(Q) is a horizontal arrow P × Q with s(P × Q) = s(P ) and t(P ×
Q) = t(P ) with natural isomorphism V2(

−→
R ; f ; g;P ×Q) ∼= V2(

−→
R ; f ; g;P ) ×

V2(
−→
R ; f ; g;Q)

We require that in our models, units exist for all objects, tensors and homs
overs small objects exist and all finite products exist. We additionally require
that the choice of tensors, homs and products commute strictly with restrictions
in that

1. (P ⊙Q)(f, g) = (P (f, id)⊙Q(id, g))

2. (P ▷ Q)(f, g) = (P (g, id) ▷ Q(f, id))

3. (P ◁ Q)(f, g) = (P (id, g) ◁ Q(id, f))

4. 1(f, g) = 1

5. (P ×Q)(f, g) = (P (f, g)×Q(f, g))

Note that these equations necessarily hold up to isomorphism, even if we do not
require them to commute strictly.



C.1 Completeness

Next we describe the syntactic properties of substitution that are needed in order
to prove the completeness theorem, that is, that the syntax of VETT presents
a hyperdoctrine of virtual equipments.

Definition 12 (Syntactic Virtual Equipment). Fix a context Γ . Define a
virtual equipment SynΓ as follows:

1. The vertical category SynΓo has categories Γ ⊢ C Cat as objects, small cat-
egories as small objects and as arrows from C to D objects α : C ⊢ b : D
modulo renaming of the input variable. Composition is given by substitution
and identity is the variable.

2. The horizontal arrows are the sets α : C;β : D ⊢ R (up to renaming α and
β) with source C and target D.

3. Note that composable strings
−→
R of horizontal arrows are in bijection with

contexts Φ. Then we can define a 2-cell SynΓ2 (Φ, a, b, S) to be an element
Γ | Φ ⊢ s : S[a/α; b/β].
Composition is defined by substitution t[ϕ] as substitutions are in bijection
with the “sequences of 2-cells” used in the definition of a virtual equipment.
Associativity says that t[ϕ][ψ] = t[ϕ[ψ]] where the composition ϕ[ψ] is defined
below and corresponds exactly to the associativity rule in a virtual equipment.

The unit is the variable, and they are unital as x[s/x] = s and s[
−−→
x/x] = s.

4. Restriction along vertical arrows is given by substitution R(a, b) = R[a/α; b/β].
This is strictly associative and unital, and the cartesian cell from R to
R[a/α; b/β] is just the identity x : R[a/α; b/β] ⊢ x : R[a/α; b/β].

Definition 13. We define the vertical composition of transformation substitu-
tions ϕ[ψ] inductively on ϕ.

(a/α)[b/β] = a[b/β]/α

(ϕ1, t/x, a/α)[ψ1 . ψ2] = ϕ1[ψ1], t[ψ2], a[d
+ψ2]

This covers all cases by lemma 6.
We define the vertical identity idΦ by induction on Φ

idα:C = α/α

idΦ,x:R,α:C = idΦ, x/x, α/α

By induction this is seen to be associative:

ϕ[ψ][σ] = ϕ[ψ[σ]]

and unital
idΦ[ϕ] = ϕ = ϕ[idΨ ]


