
Gradual Type Precision as Retraction

Max S. New
Northeastern University

maxnew@ccs.neu.edu

POPL 2017 Student Research Competition Extended Abstract

1 Introduction

Gradually typed programming languages allow for a
mix of precision of static type information, allowing
advanced type features to be added to existing lan-
guages, while still supporting interoperability with
legacy code. The advantages of gradual typing are
enticing to researchers and practitioners alike, but a
general theory of gradually typed languages is only
beginning to emerge after a decade of research.

It has long been noted that there is much similar-
ity between work on contracts and gradual typing,
and the work of Scott [1976, 1980] using retracts in
domain theory. Here we take this connection seri-
ously and consider how judgments in modern gradu-
ally typed languages can be framed in terms of retrac-
tions. While retractions in programming languages
were originally studied in terms of denotational se-
mantics in domains, our presentation will use only
the most basic elements of category theory: compo-
sition, identity and equality of terms, so our formula-
tion is equally applicable to axiomatic or operational
semantics.

We propose a semantic criterion for the notion of
precision of gradual types, a common judgment in
gradually typed languages (sometimes called näıve
subtyping for historical reasons). We relate it to a
previous definition from Wadler and Findler [2009]
(henceforth WF09) that defines type precision in
terms of blame. We show that our definition decom-
poses in a similar way into “positive” and “negative”
type precision, but without depending on a specific
notion of blame in the language.

2 Compatibility and Precision

One of the central judgments of gradually typed lan-
guages in the style of [Siek and Taha, 2006] (as op-
posed to the style of Typed Racket [Tobin-Hochstadt
and Felleisen, 2006]) is that of type compatibility (also
known as consistency), usually denoted by ∼. Infor-
mally, A ∼ B means that A and B, which are par-
tially dynamic types, agree on the statically known
components of their type. A complementary seman-
tic intuition is that A and B have non-empty inter-
section. For example, let ? be the “fully dynamic”
type and B the “fully static” type of booleans. Then

? → B ∼ B → ? because they agree on the statically
known portion → and the mismatches are all with a
dynamic type.

The judgment is used pervasively in gradual typing
rules for instance:

Γ ` t : A→ B Γ ` u : A′ A ∼ A′

Γ ` tu : B

We allow this to typecheck because we cannot locally
determine that there will be an error. In this way,
gradual typing enables a mix of static and dynamic
reasoning.

Originally Siek and Taha [2006] defined ∼ syntacti-
cally, but Siek and Wadler [2010] presented a seman-
tic definition in terms of type precision, denoted here
by v. Intuitively, A v B means that A is “less dy-
namic” than B. For example in the poset of types or-
dered by precision, ? is the top element. Then A ∼ B
means that A,B have a non-trivial meet. Therefore
we can define type compatibility by type precision.

One striking feature of this relation is that the →
type constructor is covariant, unlike the typical sub-
typing rule:

A v A′ B v B′

(A→ B) v (A′ → B′)

WF09 define precision using the idea of blame from
contracts [Findler and Felleisen, 2002]. They use this
definition to “decompose” type precision into two in-
terrelated judgments that recover the contravariance
of the → constructor. There they have a gradually
typed language with casts from any type to any other,
denoted A⇒ B. They characterize type precision in
terms of two subsidiary judgments: positive A ≤+ B
and negative A ≤− B subtyping. A positive subtyp-
ing judgment A ≤+ B means the cast A ⇒ B never
blames the positive party (the value), while a neg-
ative subtyping judgment A ≤− B means the cast
never blames the negative party (the continuation).
Then a type precision judgment A v B is equivalent
to A ≤+ B ∧ B ≤− A, i.e., casts between A and B
never blame the A side.

The downside of this definition is that it depends
on the definition of blame, which has no generally
agreed upon definition. Additionally, gradual type
systems defined without a notion of blame cannot

1



benefit from this definition.

3 Precision as Retraction

Instead, we can define precision in terms of section-
retraction pairs. Unfortunately the terminology here
is fraught. In Findler and Blume [2006], following
Scott [1976], the word retraction was used to mean
what in more modern terminology is called an idem-
potent. However, the more appropriate formalism for
typed casts is the closely related notion of section-
retraction pair. A section-retraction pair is a pair of
opposing arrows:

A
s
� B

r
� A

such that r ◦s = idA. We argue that this captures an
idea of safe typed cast, the section s is an “up-cast”,
embedding the smaller, more precise type into the
bigger, more dynamic type, whereas the retraction r
is a “down-cast”, coercing terms of type B to have
type A. The condition r ◦ s = idA guarantees that
we don’t lose any information about an A value or
continuation by “casting” to the more dynamic type
B.

With this definition in hand, we propose the fol-
lowing alternative definition of the judgment A v B,
for a language in the style of WF09, where there is
a dynamic type ? and casts between arbitrary types.
First, since ? is the most dynamic type, the casts
A⇒ ?⇒ A should form a section-retraction pair for
every gradual type A. So casting any term to dy-
namic type and back should result in an equivalent
term. Second, A v B if the section-retraction pair
A into ? is a “subretraction” of the section-retraction
pair of B into ?, that is, the casts A⇒ B ⇒ A form
a section-retraction pair and the following triangles
of casts commute1:

A ====- B A �==== B

?
�==

==-

? ==
-

�==

Which makes A act like a subset of B, since its em-
bedding into ? passes through B and its enforcement
as well.

This also “recovers” the contravariance of the ar-
row typing rule by viewing A v B as 2 judgments,
one from which we can extract the section, and the
other from which we extract the retraction. More
precisely, we can define A ≤+ B to mean the cast
A⇒ B is a section (with opposite cast its retraction)
and A ≤− B to mean the cast A⇒ B is a retraction
(with the opposite cast its section). Syntactically,
this is the same as defining A ≤+ B = A v B and

1This is a slice category into ? of a category of section-
retraction pairs of casts.

A ≤− B = B v A, but constructively it reflects the
action of the→ type on sections and retractions. We
can read the rule from WF09:

A′ ≤− A B ≤+ B′

A→ B ≤+ A′ → B′

constructively, which means to construct a section
s→ : (A→ B) � (A′ → B′), it is sufficient to have a
section sB : B � B′ and a retraction rA : A′ � A:

s→ = λf.sB ◦ f ◦ rA

The retraction r→ can be constructed using the
dual rule and the fact that s→, r→ form a section-
retraction pair is a simple calculation.

4 Blame vs Retraction

It is difficult to make a general comparison between
the definition in terms of retraction and the definition
using blame, because blame is defined as part of the
language and doesn’t have a general definition. This
is an advantage of our definition, because it requires
no additional structure in the language. We can
at least compare directly WF09’s language. While
their syntactic rules for type precision are sound for
our definition, their definitions of positive and neg-
ative subtyping are more permissive than ours, i.e.,
strictly more judgments hold according to their def-
inition than ours. In particular, in their system any
“ground” type such as B, the judgment B ≤− ? holds
since the cast B ⇒ ? never raises blame as defined
in their language. By our definition this judgment
does not hold, because of course the composition
?⇒ B⇒ ? is not the identity.

One possible interpretation is that their definition
of blame is at fault, and it should be possible for the
cast B ⇒ ? to raise negative blame. For instance
consider a continuation K : ? → ⊥ that casts to a
type of numbers N. Then composing K with the cast
B⇒ ? and any B value such as

> true- B⇒ ?
K- ⊥

reduces to an error. It seems reasonable here to assign
blame to K for not living up to the interface B.

This suggests a change in the definition of blame
that we hope to consider in future work. We also plan
to investigate if this is a failure of complete monitor-
ing in the sense of Dimoulas et al. [2012].

References

C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen.
Complete monitors for behavioral contracts. In Eu-

2



ropean Symposium on Programming (ESOP), Mar.
2012.

R. Findler and M. Blume. Contracts as pairs
of projections. In International Symposium on
Functional and Logic Programming (FLOPS), Apr.
2006.

R. B. Findler and M. Felleisen. Contracts for
higher-order functions. In International Confer-
ence on Functional Programming (ICFP), Pitts-
burgh, Pennsylvania, pages 48–59, Sept. 2002.

D. Scott. Data types as lattices. Siam Journal on
computing, 5(3):522–587, 1976.

D. S. Scott. Relating theories of the lambda-calculus.
In J. Seldin and J. Hindley, editors, To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 403–450, 1980.

J. G. Siek and W. Taha. Gradual typing for func-
tional languages. In Scheme and Functional Pro-
gramming Workshop (Scheme), pages 81–92, Sept.
2006.

J. G. Siek and P. Wadler. Threesomes, with and with-
out blame. In ACM Symposium on Principles of
Programming Languages (POPL), Madrid, Spain,
pages 365–376, 2010.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage
migration: From scripts to programs. In Dynamic
Languages Symposium (DLS), pages 964–974, Oct.
2006.

P. Wadler and R. B. Findler. Well-typed programs
can’t be blamed. In European Symposium on Pro-
gramming (ESOP), pages 1–16, Mar. 2009.

3


