
Gradual Typing for Effect Handlers

MAX S. NEW, University of Michigan, USA

ERIC GIOVANNINI, University of Michigan, USA

DANIEL R. LICATA,Wesleyan University, USA

We present a gradually typed language, GrEff, with effects and handlers that supports migration from

unchecked to checked effect typing. This serves as a simple model of the integration of an effect typing

discipline with an existing effectful typed language that does not track fine-grained effect information. Our

language supports a simple module system to model the programming model of gradual migration from

unchecked to checked effect typing in the style of Typed Racket.

The surface language GrEff is given semantics by elaboration to a core language Core GrEff. We equip

Core GrEff with an inequational theory for reasoning about the semantic error ordering and desired program

equivalences for programming with effects and handlers. We derive an operational semantics for the language

from the equations proveable in the theory. We then show that the theory is sound by constructing an

operational logical relations model to prove the graduality theorem. This extends prior work on embedding-

projection pair models of gradual typing to handle effect typing and subtyping.

ACM Reference Format:
Max S. New, Eric Giovannini, and Daniel R. Licata. 2018. Gradual Typing for Effect Handlers. InWoodstock

’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA,

86 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Gradually typed programming languages are designed to support smooth migration from a lax to a

strict static type discipline [22, 26]. Most commonly, gradually typed languages add a static type

system to an existing dynamically typed language and allow for (1) safe interoperability between

the languages and (2) semantic guarantees that adding types to existing programs only results in

stricter type enforcement, and no other behavioral change. More generally, gradual typing has been

applied to provide a spectrum of precision in other kinds of typing disciplines such as refinement

typing or effect typing [1, 9], where the “dynamic” side is a statically typed language itself.

One particular presentation of effects and effect typing that is gaining popularity is effect
handlers [19]. Operationally, effect handlers can are resumable exceptions, code can "raise" an

effect operation, which will then be handled by the closest enclosing handler, which in addition to

the exception data will also receive the continuation for the raising code that can be invoked to

resume at the original point where the effect was raised. Effect handlers provide a simple typed

interface to delimited continuations. Many implementations of effect handlers in experimental

languages or as libraries [2, 4, 8, 10, 11], and notably have been added as a built-in language feature

in OCaml [24] and are a proposed extention to WASM [3].

Designers of languages supporting effect handlers, much like designers of languages with

exceptions, are left with a choice of whether the type system should merely track that the input and

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

output types of effect operations are satsified, or if a an effect typing system should be employed to

determine which effects can be raised at any given time. On the one hand, checked effects allow

programmers to easily reason about which effects can be raised and handle them appropriately.

On the other hand, strict checking may necessitate large code changes when code is extended to

raise new operations, and many statically typed languages such as Standard ML and Java support

unchecked exceptions. Gradual typing can provide a framework in which the programmer is not

locked in to one system or another: they might use unchecked exceptions in one module and

checked exceptions in another, while supporting well-defined interoperability with useful error

messages at runtime if there is an un-handled effect.

In this work we present the design and semantics of GrEff, a gradual language with effect handlers

that supports gradual migration from unchecked effects to precise effect typing. The untracked

sublanguage of GrEff is designed to be similar to SML and Java’s treatment of exceptions: new

effect operations are declared with specified input and output types, and these can be imported

and used to raise and handle those operations in other modules, but which effects are raised by a

function is not tracked by the type system. But GrEff also supports tracked function types 𝐴 →𝜎 𝐵

where the input values must be of type𝐴, output values will be of type 𝐵, but also the function may

raise any of the effects in the set 𝜎 . The untracked function type is modeled then as a type 𝐴 →? 𝐵

which has a “dynamic” effect type, in the sense that it may raise any effect, possibly including

unknown effect operations declared in some independent module of the program.

There are two aspects in designing a sound gradually typed language: designing the syntax and

gradual type checking of the surface language and designing the corresponding core language and

semantics. We designed the surface language with the goal of modeling program migration from

static to dynamic typing. For this reason we include a simple module system in the style of Typed

Racket [26] so that we can express that different portions of the program have different views on

how the effect operations are typed. Once the base language is designed, the gradual type system

is based on prior work on gradual type systems [7, 22].

To design the core language and runtime semantics, we follow the prior work ([14, 17]) which

established a recipe for designing a new gradual language to satisfy the graduality theorem and

validate strong type-based equational reasoning principles. Their approach is to axiomatize the

type-based reasoning principles as equations and the graduality theorem as inequalities, where

casts are defined not by specifying their operational behavior but instead by assuming they are

given by least upper bounds/greatest lower bounds. Then the operational behavior of the casts

can be derived from the ineqational theory. An operational or denotational model must then be

constructed to prove the theory is sound, which implies the graduality theorem. But since the

operational semantics is derived from the inequational theory, this also establishes a stronger

theorem that the observable behavior or the casts is uniquely determined by the desired type-based

reasoning and graduality, showing that any observably different cast semantics must violate one or

more of the axioms.

For Core GrEff we extend this recipe to include effect casts and subtyping of value and effect

types. We then show that every rule of an operational semantics is derivable from the least upper

bound/greatest lower bound specifications of casts as well as congruence rules and a handler

extensionality principle for effect handlers that is motivated by the free monad models of effect

handlers. The handler extensionality principle states that a handler clause that simply re-raises

the effect it handles with the same continuation can be removed without changing the behavior, a

desirable optimization in any effect handler system.

For ordinary gradual typing with a dynamic type, the dynamic type is modeled by a recursive

sum type of all of the basic type formers. Then all gradual types 𝐴 come with a specified embedding

projection pair of casts which say how to embed the type 𝑒 : 𝐴 → ? and vice-versa, how to cast

2

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(with possibility of errors) from 𝑝 : ? → 𝐴. The defining properties of an embedding-projection

pair are that embedding followed by projecting is the identity 𝑝 ◦ 𝑒 = id while projecting and then

embedding is below the identity in the error ordering 𝑒 ◦ 𝑝 ⊑ id. Then gradual type casts from a

type 𝐴 to a type 𝐵 are modeled by casting through the dynamic type by first embedding 𝐴 into ?

and then projecting to 𝐵. While this is not necessarily an efficient implementation, it is a simple

specification for how an optimized implementation should extensionally behave. GrEff has, rather

than a dynamic value type, a dynamic effect type, and so we must adapt the notion of universal

type and embedding-projection pair to this setting. We designed GrEff’s core language based on a

heuristic denotational semantics. Each effect type 𝜎 is interpreted as a free monad 𝑇𝜎 , a standard

semantics for algebraic effects:𝑇𝜀𝑖 :𝐴𝑖{𝐵𝑖 · · ·𝐴 = 𝜇𝑋 .𝐴+ (𝐴𝑖 × (𝐵𝑖 → 𝑋)) + · · · . An element of the free

monad is either a final value𝐴 or a choice of operation 𝜀𝑖 with a corresponding request value, and a

kontinuation 𝐵𝑖 → 𝑇· · ·𝐴 for the response which is a further free monad computation. The dynamic

effect will be interpreted then as a particular free monad, generated from the “most imprecise”

version of the effects possible.

1.1 Nominal vs Structural Effects
In GrEff, new effect operations can be declared in each module, similar to new exceptions being

declared in ML-style languages. When an effect is declared in a module, it is given an associated

request and response type. For instance, an effect for reading a boolean state would be get : 1 ~> 2,
the user provides a trivial element of 1 as the request and receives an element of boolean type 2

as the response, while an effect for writing a boolean state would be set : 2 ~> 1. This means

that GrEff takes a nominal approach to effect operations: each effect operation has an associated

request and response type that is used to determine when raising or handling the effect is done

correctly. However, having a single, global assignment from effect names to request/response types

is problematic from the perspective of gradual migration from untracked to tracked effects. In a

completely nominal form of effect typing, if an effect operation is used in many different modules

with imprecise typing, and one module is migrated to use a more precise version of the effect’s

request/response type, then we would need to migrate all modules to use the more precise type.

Instead, gradual migration should allow for this to be done a single module at a time. To achieve

this, in GrEff, we take a locally nominal but globally structural approach to the typing of effect

operations. That is, each module has a single view of what the request and response types are for

each effect operation that is in scope, but different modules can associate different types to the

same effect operation.

The contributions of the paper are as follows:

(1) We define a gradually typed language GrEff supporting migration from unchecked to checked

effects and handlers.

(2) We prove this language satisfies the static gradual guarantee and the dynamic gradual

guarantee (graduality).

(3) We give the language a semantics by elaboration into a core language.

(4) We axiomatize the desired graduality and program equivalence properties of the core language

by giving an inequational theory. We then derive from this an operational semantics by

orienting certain equations in the theory, showing the operational behavior is uniquely

determined by the graduality and extensionality principles.

(5) We prove type soundness and graduality by constructing a logical relations model, extending

prior work on ep pair semantics to effects and subtyping.

3

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

2 OVERVIEW OF GREFF
Before discussing the syntax and semantics of GrEff, we provide an informal introduction to its

features and how it supports a gradual migration from unchecked to checked effect handlers. As

an example, consider the implementation of a simple threading library using effect handlers. We

start with a system using unchecked effect types in an ASCII syntax in Figure 1. We split this

program across three modules: first, a module Operations defines the effects we will be using in
our other modules. These are the effects that the threads use: print for displaying output so that

we can observe the interleaving of threads, yield, which yields back control to the scheduler, and

most importantly, fork, which allows for a thread to spawn new threads. Each effect declaration

effect e : Req ~> Resp is annotated with two types: the type of requests to the ambient handler,

and the type of expected responses from the ambient handler. For instance, the request type for

print is a string to be printed, and the response is unit. In a more realistic setting, the response

type might be a boolean to say if the printing succeeded, or an unsigned integer to say how many

bytes were succesfully printed. For yield, the request and response are both unit. For fork, the

response type is again unit and the request type is a thunk 1 -[?]> 1 where the ? is the type of
effects the function may raise when called. In this case, ? indicates the thunk might raise any effect.

Next, module Scheduler defines a round-robin scheduler as a handler for the provided effects.

For simplicity the implementation relies on some built-in queue implementation, and shallow

handlers, a simple extension to our formalism which uses the more complex deep handlers. Finally,

we have the Main module, which uses the scheduler defined in the Scheduler module with a

thunk that uses the effects defined in the Operations to implement a program that prints a simple

message using threads whose output will depend on the scheduler’s behavior.

The imprecision of the effect typing in this program means that programmers have to rely on

documentation or understanding of the code to understand what effects might be raised when

they import a function from another module. With effect typing, this information can be expressed

precisely using effect annotations on the functions themselves. For instance, in the declaration of

the fork operation, the request is a thunk that when launched as a thread itself may raise further

effects such as manipulating shared state, yielding to other threads, or forking additional threads.
However with imprecise effect tracking, the scheduler procedure rr has the uninformative type 1
-[?]> 1 -[?]> 1 so we cannot specify in the type which operations the scheduler will handle and

which it will propagate forward.

GrEff allows as well for the introduction of precise effect types to express these choices in the type

structure. In figure 2, we show a fully precisely typed version of the same threading program (with

implementations, which are unchanged, now elided). This allows us to specify in the Scheduler
module that the scheduler expects threads that can (1) print a string, (2) yield to the other threads
and (3) fork further threads with the same effects. To express this, the scheduler module changes

the type to 1 -[fork,print,yield]> 1 -[]> str expressing that the scheduler will be passed
a thunk that may fork print or yield, but will itself return a string without raising any effects.

Additionally, we can express that forked threads should only raise these three effects as well. This is

expressed by annotating the import statement, which defines fork as a recursive
1
effect type whose

response type is trivial and whose request type is that of thunks that can raise the three provided

effects. This typing will then be used by all occurrence of the fork effect, in raise or handlers, within

this module. The types are also changed in the main module, where the letters thunk can be

given a type expressing it only prints and yields, whereas numbers thunk only forks and prints.

1
though recursive effect types are natural here, we do not support them in our core language and leave this extension to

future work

4

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

module Operations where
effect yield : 1 -> 1
effect print : str -> 1
effect fork : (1 -[?]> 1) ~> 1

module Scheduler where
import Operations.yield : 1 ~> 1
import Operations.print : str -> 1
import Operations.fork : (1 -[?]> 1) ~> 1
define sch-loop : Queue (1 -[?]> 1) -[?]> str -[?]> str = lambda q.
match q with
empty -> ()
dequeue(thunk, q') -> shallow-handle thunk() with
ret _ -> sch-loop q'
fork(new,k) -> sch-loop (enqueue (enqueue q new) k)
yield(_, k) -> sch-loop (enqueue q k)
print(s, k) -> lambda s'. k(s' ++ s)

define scheduler : (1 -[?]> 1) -[?]> str = lambda thunk.
sch-loop (enqueue empty thunk) ""

module Main where
import Operations.yield : 1 ~> 1
import Operations.print : str -> 1
import Operations.fork : (1 -[?]> 1) ~> 1
import Scheduler.scheduler : (1 -[?]> 1) -[?]> str
define letters : 1 -[?]> 1 =
print("a"); yield(); print("b"); ()

define numbers : 1 -[?]> 1 =
print("1"); fork(letters); print("2"); ()

define main: 1 -[?]> str =
scheduler(numbers)

Fig. 1. GrEff Threading Program with Imprecise Types

These are compatible with the types in scheduler using an effect subtyping that allows functions

that use fewer effects to be used in a context that can handle more.

Since GrEff is a gradual effect language, a programmer who started with the imprecise program

does not need to fully type the entire program before running it. Instead, the programmer can

gradually migrate from the imprecise style to the more precise style, for example one module at a

time. In fact, any of the 2
3 = 8 combinations of the imprecise versions and precise versions of the

three modules presented here will pass the GrEff gradual type-and-effect checker. For instance, we

might start with adding precise effect typing to the Operations module to specify the effects that

a forked thread can have. Whereas in a non-gradual type system, this would require changing the

consumer modules to use the more precise typing, in GrEff, the import statements allow for the uses

within the module to continue to use the imprecise typing, and at the module boundary it is checked

that the precise components of the declared type for the fork effect match the precise components

of the declaration in the defining module. On the other hand, we can keep the Operations module

imprecisely typed, and instead add typing to the Scheduler module first. This is again unusual

compared to a conventional typed language, we have declared a nominal data type in one module,

5

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

module Operations where
effect yield : 1 -> 1
effect print : str -> 1
effect fork : (1 -[fork,print,yield]> 1) ~> 1

module Scheduler where
import Operations.yield : 1 ~> 1
import Operations.print : str -> 1
import Operations.fork : (1 -[fork,print,yield]> 1) ~> 1
define sch-loop : Queue (1 -[fork,print,yield]> 1) -[]> str -[]> str = ...
define scheduler : (1 -[fork,print,yield]> 1) -[]> str = ...

module Main where
import Operations.yield : 1 ~> 1
import Operations.print : str -> 1
import Operations.fork : (1 -[fork,print,yield]> 1) ~> 1
import Scheduler.scheduler : (1 -[fork,print,yield]> 1) -[]> str
define letters : 1 -[print,yield]> 1 =
print("a"); yield(); print("b"); ()

define numbers : 1 -[fork,print]> 1 =
print("1"); fork(letters); print("2"); ()

define main: str =
scheduler(numbers)

Fig. 2. GrEff Threading Program with Precise Typing

but use it at a different type in a client module. The import statements allow for the gradual

migration of the client code without changing the original library.

The module system plays a crucial role in allowing for the programmer to independently choose

between migrating the declaration site of the nominal datatype and its uses. If we were in a

purely expression-oriented language, then any change to the module declaration, even in a gradual

language, would change the typing of the uses of the operation. Here we use the module boundaries

in the style of Typed Racket as a way to formally specify different expectations of what the type of

the nominal effect operations should be in different portions of the codebase.

3 SURFACE AND CORE GREFF
In this section, we introduce the syntax and typing of GrEff along with its elaboration into a core

language, Core GrEff. GrEff includes a module system and nominal effect operations, as well as a

gradual type checking algorithm that allows for a mix of dynamic and static effect tracking. Core

GrEff, on the other hand, is a simpler expression language with a declarative type system where all

gradual type casts (but not subtyping) are explicit in the term. The high-level features of GrEff are

elaborated away into core GrEff. Because Core GrEff is simpler, we describe its syntax and typing

first, and then describe GrEff and its type-checking/elaboration algorithm.

3.1 Syntax and Typing of Core GrEff
We give an overview of the Core GrEff syntax in Figure 3. Core GrEff expression syntax include typi-

cal lambda calculus syntax for variables, let-bindings, functions and booleans. Next, it includes forms

for raising an effect operation raise 𝜀 (𝑀) and handling effect operations handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}.
The handler includes a clause ret 𝑥 .𝑁 to handle a return value for𝑀 as well as clauses for handling

6

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Terms𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥 .𝑀 | 𝑀𝑀 ′ | true | false | if 𝑀{𝑁 }{𝑁 }
| let 𝑥 = 𝑀 in 𝑁 | raise 𝜀 (𝑀) | handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}
| ⟨𝐵 ↢ 𝐴⟩𝑀 | ⟨𝐴 ↞ 𝐵⟩𝑀 | ⟨𝜏 ↢ 𝜎⟩𝑀 | ⟨𝜎 ↞ 𝜏⟩𝑀

Handler clause 𝜙 ∈ Name ⇀fin Term

Value Types 𝐴, 𝐵,𝐶 ::= 𝐴 →𝜎 𝐵 | bool
Effect Types 𝜎, 𝜏 ::= ? | 𝜎𝑐

Concrete Effect Types 𝜎𝑐 ∈ Name ⇀fin ValueType
2

Signature Σ ∈ Name ⇀fin NonTrackingType
2

Non-tracking Types 𝐴? ::= 𝐴? →? 𝐴? | bool
Typing Contexts Γ ::= · | Γ, 𝑥 : 𝐴

Values 𝑉 ::= 𝑥 | 𝜆𝑥 : 𝐴.𝑀 | true | false
| ⟨𝐴 →𝜎 𝐵 ↢ 𝐴′ →𝜎 ′ 𝐵′⟩𝑉 | ⟨𝐴′ →𝜎 ′ 𝐵′

↞ 𝐴 →𝜎 𝐵⟩𝑉
Evaluation Context 𝐸 ::= • | ⟨𝐵 ↢ 𝐴⟩𝐸 | ⟨𝐴 ↞ 𝐵⟩𝐸 | ⟨𝜏 ↢ 𝜎⟩𝐸 | ⟨𝜎 ↞ 𝜏⟩𝐸

| raise 𝜀 (𝐸) | handle 𝐸 {ret 𝑥 .𝑁 | 𝜙} | 𝐸 𝑀 | 𝑉 𝐸

| if 𝐸{𝑁𝑡 }{𝑁𝑓 } | let 𝑥 = 𝐸 in 𝑁

Fig. 3. Core GrEff Syntax

effects 𝜙 . Abstracting from syntactic details, 𝜙 is modeled as a finitely supported partial function

from effect names to terms, which all have two free variables 𝑥 and 𝑘 for the payload of the effect

raised and its continuation. That is, if syntactically a handler has a clause 𝜀 (𝑥, 𝑘) ↦→ 𝑁𝜀 , we model

this by having 𝜙 (𝜀) = 𝑁𝜀 . Finally, Core GrEff includes four explicit gradual type cast forms: down-

casts (⟨𝐴 ↞ 𝐵⟩𝑀) and upcasts (⟨𝐵 ↢ 𝐴⟩𝑀) for value types, as well as analogous casts for effect

types (⟨𝜎 ↞ 𝜏⟩𝑀 and ⟨𝜏 ↢ 𝜎⟩𝑀).

The value types𝐴, 𝐵,𝐶 classify runtime values: in this simple calculus, just booleans and functions,

where functions are typed with respect to a domain, codomain as well as an effect type 𝜎 which

classifies what effects the function may raise when it is called. The effect types are either ? to

indicate dynamically tracked effects, or a concrete effect type. A concrete effect type says which

effect names 𝜀 can be raised, and when they are raised, what is the type of the request 𝐴 the

raising party provides and what is the type of responses 𝐵 with which the handling party can

resume. Abstracting from syntactic details, this is defined to be a finitely supported partial mapping

from names to pairs of value types. To model that an effect 𝜀 can be raised with request type 𝐴

and response type 𝐵 we would define 𝜎𝑐 (𝜀) = (𝐴, 𝐵), which we will notate more suggestively as

𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 . As shown in Section 2, programs declare which effect names can be used, and

with which associated request and response types. To track this information in typing core GrEff

expressions, we type check all GrEff expressions against a Signature Σ which associates a pair of

non-tracking types to each name. By a non-tracking type, we mean a value types that only use ?

effect types. Additionally, expressions are type-checked with respect to an ordinary typing context

Γ. Finally, we define typical notions of value and evaluation context to encode a call-by-value,

left-to-right evaluation order. Most notably, all casts are evaluation contexts, and function casts are

values, i.e. “proxies” that delay type enforcement until an application is performed.

Next, we present declarative term typing rules in Figure 4. The main judgment Σ | Γ ⊢𝜎 𝑀 : 𝐴

says that under the assumptions Γ,𝑀 can raise effects drawn from 𝜎 , and produce a final value of

type 𝐴. We follow the convention that whenever we form the judgment Σ | Γ ⊢𝜎 𝑀 : 𝐴 we must

already have established that the types in Γ, 𝐴, 𝜎 are well-formed under the signature Σ. First, we
include explicit subsumption rules for value and effect subtyping, which we will soon define. The

rules for value forms (variable, booleans, and lambdas) all have an arbitrary effect type 𝜎 because

7

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Σ | Γ ⊢𝜎 𝑀 : 𝐴 Σ | Γ ⊢ 𝐴 ≤: 𝐵
Σ | Γ ⊢𝜎 𝑀 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴 Σ | Γ ⊢ 𝜎 ≤: 𝜏
Σ | Γ ⊢𝜏 𝑀 : 𝐴

Γ(𝑥) = 𝐴

Σ | Γ ⊢𝜎 𝑥 : 𝐴

Σ | Γ ⊢𝜎 true, false : bool
Σ | Γ, 𝑥 : 𝐴 ⊢𝜏 𝑀 : 𝐵

Σ | Γ ⊢𝜎 𝜆𝑥 .𝑀 : 𝐴 →𝜏 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜎 𝑁 : 𝐵

Σ | Γ ⊢𝜎 let 𝑥 = 𝑀 in 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴 →𝜎 𝐵

Σ | Γ ⊢𝜎 𝑁 : 𝐴

Σ | Γ ⊢𝜎 𝑀 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : bool
Σ | Γ ⊢𝜎 𝑁𝑡 : 𝐵 Σ | Γ ⊢𝜎 𝑁𝑓 : 𝐵

Σ | Γ ⊢𝜎 if 𝑀{𝑁𝑡 }{𝑁𝑓 } : 𝐵
Σ | Γ ⊢𝜎 𝑀 : 𝐴 𝜖@𝐴 { 𝐵 ∈ 𝜎

Σ | Γ ⊢𝜎 raise (𝜖@𝐴 { 𝐵) (𝑀) : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜏 𝑁 : 𝐵

(∀(𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜎. (𝜀 ∉ dom(𝜙) ∧ (𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜏)
∨(Σ | Γ, 𝑥 : 𝐴𝜀 , 𝑘 : 𝐵𝜀 →𝜏 𝐵 ⊢𝜏 𝜙 (𝜀) : 𝐵))
Σ | Γ ⊢𝜏 handle 𝑀 {ret 𝑥 .𝑁 | 𝜙} : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ ⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐵 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ ⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 : 𝐴

Σ | Γ ⊢𝜎 𝑀 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ ⊢𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝑀 : 𝐴

Σ | Γ ⊢𝜎 ′ 𝑀 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ ⊢𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝑀 : 𝐴

Fig. 4. Core Greff Typing

they do not raise any effects themselves. The let, application and if rules simply require that all the

sub-terms use the same effect type, though subsumption can be used to combine effects The raise

rule says that the effect being raised needs to be in the current effect type and the payload of the

request must also have the same effect type.

Next, the rule for typing a handler works as follows. First, we have the output value is 𝐵 and

output effect types is 𝜏 , while for the scrutinee𝑀 the corresponding types are 𝐴 and 𝜎 . First, we

check that the return clause 𝑁 has the same output types as the handler overall, when its input 𝑥

has the type of the output of 𝑀 . Next, for each effect operation 𝜀 : 𝐴𝜀 { 𝐵𝜀 raised by 𝑀 , either

the effect is not handled by 𝜙 , in which case it must be included in the final effect type, or it is

handled by 𝜙 . If it is handled by 𝜙 , then the clause 𝜙 (𝜀) must be well typed with a request value

𝑥 : 𝐴𝜀 and a continuation that takes responses and has output effect and value types that match the

term overall 𝑘 : 𝐵𝜀 →𝜏 𝐵. Lastly, we include the rules for type and effect upcasts and downcasts.

Whenever a type precision relationship 𝐴 ⊑ 𝐵 holds (to be defined), we get an upcast from the more

precise type 𝐴 to the more imprecise type 𝐵 and a corresponding downcast from 𝐵 to 𝐴.

Finally, finishing out the syntax, in Figure 5, we define three judgments on types: well-formedness,

subtyping and type precision. Well-formedness Σ ⊢ 𝐴 and Σ ⊢ 𝜎 checks that the types used in

effect operations erase to the types associated in the signature. Here we use the notation |𝐴| to
mean the erasure of effect typing information in that we replace any effect type subterms 𝜎 with

dynamic ?. Subtyping works as usual for booleans and functions, contravariant in domain of the

function type, but covariant in the codomain and effect. Subtyping for effect types includes both a

width subtyping aspect: a smaller type can raise fewer operations, as well as a depth aspect that

is covariant in the request type and contravariant in the response type. This variance sense from

the perspective of the party producing the request, to match the function type subtyping. Finally,

8

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Σ ⊢ bool
Σ ⊢ 𝐴 Σ ⊢ 𝜎 Σ ⊢ 𝐵

Σ ⊢ 𝐴 →𝜎 𝐵
Σ ⊢ ?

∀𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 .

(𝜀 : |𝐴| { |𝐵 | ∈ Σ). ∧ Σ ⊢ 𝐴 ∧ Σ ⊢ 𝐵)
Σ ⊢ 𝜎𝑐

bool ≤: bool
𝐴′ ≤: 𝐴 𝜎 ≤: 𝜎 ′ 𝐵 ≤: 𝐵′

𝐴 →𝜎 𝐵 ≤: 𝐴′ →𝜎 ′ 𝐵′ ? ≤: ?

∀𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎𝑐 .∃𝜀 : 𝐴𝜏 { 𝐵𝜏 ∈ 𝜏𝑐 .

𝐴𝜎 ≤: 𝐴𝜏 ∧ 𝐵𝜏 ≤: 𝐴𝜏

𝜎𝑐 ≤: 𝜏𝑐

bool ⊑ bool
𝐴 ⊑ 𝐴′ 𝜎 ⊑ 𝜎 ′ 𝐵 ⊑ 𝐵′

𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′ 𝜎 ⊑ ?

dom(𝜎𝑐) = dom(𝜎 ′
𝑐)

∀𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 .∃𝜀 : 𝐴′ { 𝐵′ ∈ 𝜎 ′
𝑐 .

𝐴 ⊑ 𝐴′ ∧ 𝐵 ⊑ 𝐵′

𝜎𝑐 ⊑ 𝜎 ′
𝑐

Fig. 5. Well formed types and effects, Type and Effect Precision

Programs 𝑃 ::= 𝐿; · · · 𝐿𝑚𝑎𝑖𝑛

Value Types 𝐴, 𝐵,𝐶 ::= 𝐴 →𝜎 𝐵 | bool
Effect Types 𝜎, 𝜏 ::= ? | 𝜎𝑠

Operation Set 𝜎𝑠 , 𝜏𝑠 ∈ Pfin (Name)
Values 𝑉 ::= 𝑥 | 𝜆𝑥 : 𝐴.𝑀 | true | false

Terms𝑀, 𝑁 ::= 𝑥 | raise 𝜀 (𝑀) | handle𝐶 !𝜎 𝑀 {ret 𝑥 .𝑁 | 𝜙}
| 𝜆𝑥 .𝑀 | 𝑀𝑀 ′ | true | false | if 𝑀{𝑁 }{𝑁 }
| 𝑀 :: 𝐴 | 𝑀 :: 𝜎

Handler clauses 𝜙 ∈ Name ⇀fin Term

Modules 𝐿 ::= module 𝑚 {𝑏}
Module Body 𝑏 ::= · | 𝐷 ;𝑏

Main Module 𝐿𝑚𝑎𝑖𝑛 ::= main {𝑏;𝑀}
Module reference 𝑟 ::= 𝑚.𝑥 | 𝑚.𝜀

Declaration 𝐷 ::= import-eff 𝑟 as 𝜀@𝐴 { 𝐵 | effect 𝜀 : 𝐴 { 𝐵

| define 𝑥 = 𝑉 | import-val 𝑟 as 𝑥 @𝐴

Program Typing Contexts Δ ::= · | Δ, 𝑥 ↦→ Γ𝑠
Module Typing Contexts Γ𝑠 ::= · | Γ𝑠 , 𝜀 : 𝐴 { 𝐵 | Γ𝑠 , 𝑥 : 𝐴

Fig. 6. GrEff Syntax

type precision 𝐴 ⊑ 𝐵 tracks instead how “dynamic” or “imprecise” a type is. For functions it is

covariant in every argument, and for effect types, the dynamic effect is the most imprecise and for

two concrete effect sets, it has a depth rule that that is covariant in request and response positions.

3.2 Syntax and Elaboration of GrEff
We present the syntax for the surface language GrEff in Figure 6. A GrEff program 𝑃 consists of a

sequence of modules ending in a single “main” module. Each module𝑚 consists of two parts: first,

the effect definitions and then the value definitions, whose types annotations may use the effects

previously defined in that module. An effect definition is either a declaration of a new effect opera-

tion effect 𝜀 : 𝐴 { 𝐵 or an import of an existing effect operation import-eff 𝑚 as 𝜀@𝐴 { 𝐵.

9

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Σ | Δ | · ⊢ 𝑏 ⇒ Σ′;𝛾 ; Γ
Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐴

Σ | Δ ⊢ main 𝑏 𝑀𝑠 ⇒ Σ′ ⊢𝜎 let Γ = 𝛾 in 𝑀 : 𝐴

Σ | Δ | · ⊢ 𝑏 ⇒ Σ′;𝛾 ; Γ
Σ, Σ′ | Δ,𝑚 ↦→ Γ ⊢ 𝑃 ⇒ Σ′′ ⊢𝜎 𝑀 : 𝐴

Σ | Δ ⊢ module 𝑚 𝑏; 𝑃 ⇒ Σ′, Σ′′ ⊢𝜎 let Γ = 𝛾 in 𝑀 : 𝐴

Σ | Δ | Γ ⊢ · ⇒ ·; ·; ·
𝜀 ∉ Σ Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ ⊢ 𝐵𝑠 ⇒ 𝐵

Σ | Δ | Γ ⊢ effect 𝜀 : 𝐴𝑠 { 𝐵𝑠 ⇒ (𝜀@⌈𝐴⌉ { ⌈𝐵⌉); ·; 𝜀@𝐴 { 𝐵

Σ | Δ | Γ ⊢ 𝐷 ⇒ Σ′;𝛾 ′; Γ′

Σ, Σ′ | Δ | Γ, Γ′ ⊢ 𝑏 ⇒ Σ′′;𝛾 ′′; Γ′′

Σ | Δ | Γ ⊢ 𝐷 ;𝑏 ⇒ Σ′, Σ′′;𝛾 ′, 𝛾 ′′; Γ′, Γ′′

Δ(𝑚) ∋ 𝜀@𝐴′ { 𝐵′ Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ ⊢ 𝐵𝑠 ⇒ 𝐵

𝐴 ∼ 𝐴′ 𝐵 ∼ 𝐵′

Σ | Δ | Γ ⊢ import-eff 𝑚 as 𝜀@𝐴𝑠 { 𝐵𝑠 ⇒ ·; ·; 𝜀@𝐴 { 𝐵

Γ ⊢ 𝑉𝑠 ⇒ 𝑉 : ∅ !𝐴
Σ | Δ | Γ ⊢ define 𝑥 = 𝑉𝑠 ⇒ ·;𝑉 /𝑥 ;𝑥 : 𝐴

Δ(𝑚) ∋ 𝑥 : 𝐴′ Γ ⊢ 𝐴𝑠 ⇒ 𝐴 𝐴′ ≲ 𝐴

Σ | Δ | Γ ⊢ import-val 𝑚.𝑥 as 𝑦@𝐴𝑠 ⇒ ·; ⟨𝐴 ⇐ 𝐴′⟩𝑥/𝑦;𝑦 : 𝐴

Fig. 7. GrEff Typing/Elaboration, Module Language

In either case, the declaration includes the request type 𝐴 and the response type 𝐵 of the effect. An

effect import brings an effect defined in another module into the current scope, but with a possibly

different request and response type. To support gradual migration, these types are allowed to have

a different level of precision than the original, but where both are precise they must match. After

the effect declarations are the value definitions which are also either a definition of a new value

define 𝑥 = 𝑉 or an import of a value declared in a different module at a possibly different type

import-val 𝑟 as 𝑥 @𝐴. For simplicity, all effects and values are public and can be imported by

later modules. Finally a program ends with a main module, which consists of the same kind of

effect and value declarations, followed by a final main expression.

Next, we present the elaborator from GrEff into core GrEff, which also serves as the type checker.

We view GrEff programs as essentially a description of an effect signature Σ and a closed expression

well-typed under that signature. The module system is a way to manage the declaration of new

effect operations in the signature and a way to manage the typing of effect operations by giving

nominal associations to request and response types rather than solely the structural typing in core

GrEff. We describe the elaboration of the module language in Figure 7. The top-level judgment

Σ | Δ ⊢ 𝑃 ⇒ Σ′ ⊢𝜎 𝑀 : 𝐴 says that under the starting signature Σ and previously defined modules

Δ, we can elaborate 𝑃 to a term𝑀 with effect type 𝜎 and value type 𝐴 that is well-typed under the

extension of the signature by Σ′
. This expresses that not only does a program denote a core GrEff

program, but it also has a “side effect” of allocating new effect names Σ′
. A module is elaborated

with the judgment Σ | Δ | Γ ⊢ 𝑏 ⇒ Σ;𝛾 ′; Γ′. The outputs of this judgment are the newly allocated

effects of the module Σ′
, the names of effect operations and types for values the module defines Γ′

and the definitions of all the values the module defines, given as a substitution 𝛾 ′ from names in Γ′

to terms of their associated types. Then to elaborate a program consisting of several modules, first

you elaborate the modules and then elaborate the remainder of the program and finally combine

the two by let-binding all of the names declared in the module, which we write as a shorthand

let Γ = 𝛾 in 𝑀 . Note that though Γ contains both variables and effect declarations, the effect

declarations are unused in this part of the elaboration. A module is elaborated by combining

the results of elaborating each declaration. A new effect declaration checks that the name is not

previously declared, and then recursively elaborates the syntactic types declared for request and

response and then adds these to the allocated effects as well as the local effect names declared in

the module. When adding to the signature, we take the “ceiling” of the types because signatures use

10

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

⟨𝐴 ⇐ 𝐵⟩𝑀 = ⟨𝐴 ↞ ⌈𝐴⌉⟩⟨⌈𝐵⌉ ↢ 𝐵⟩𝑀 ⟨𝜎 ⇐ 𝜏⟩𝑀 = ⟨𝜎 ↞ ?⟩⟨?↢ 𝜏⟩𝑀

Γ ∋ 𝑥 : 𝐴

Γ ⊢ 𝑥 ⇒ 𝑥 : ∅ !𝐴
Γ ⊢ true ⇒ true : ∅ ! bool Γ ⊢ false ⇒ false : ∅ ! bool

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐴′ Γ ⊢ 𝐴𝑠 ⇒ 𝐴 𝐴′ ≲ 𝐴

Γ ⊢ 𝑀𝑠 :: 𝐴𝑠 ⇒ ⟨𝐴 ⇐ 𝐴′⟩𝑀 : 𝜎 !𝐴

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 ′
!𝐴 Γ ⊢ 𝜎𝑠 ⇒ 𝜎 𝜎 ′ ≲ 𝜎

Γ ⊢ 𝑀𝑠@𝜎𝑠 ⇒ ⟨𝜎 ⇐ 𝜎 ′⟩𝑀 : 𝜎 !𝐴

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 ! bool Γ ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐵 Γ ⊢ 𝑁 ′
𝑠 ⇒ 𝑁 ′

: 𝜎 ′
𝑛 !𝐵

′

𝐶 = 𝐵
∼
∨𝐵′ 𝜎 = 𝜎𝑚

∼
∨𝜎𝑛

∼
∨𝜎 ′

𝑛

Γ ⊢ if 𝑀𝑠 {𝑁𝑠 }{𝑁 ′
𝑠 } ⇒ if ⟨𝜎 ⇐ 𝜎𝑚⟩𝑀{⟨𝜎 ⇐ 𝜎𝑛⟩⟨𝐶 ⇐ 𝐵⟩𝑁 }{⟨𝜎 ⇐ 𝜎 ′

𝑛⟩⟨𝐶 ⇐ 𝐵′⟩𝑁 ′} : 𝜎 ! bool

Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐵

Γ ⊢ 𝜆𝑥 : 𝐴𝑠 .𝑀𝑠 ⇒ 𝜆𝑥.𝑀 : ∅ !𝐴 →𝜎 𝐵

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴 →𝜎𝑜 𝐵 Γ ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐴
′

𝐴′ ≲ 𝐴 𝜎 = 𝜎𝑚
∼
∨𝜎𝑛

∼
∨𝜎𝑜

Γ ⊢ 𝑀𝑠 𝑁𝑠 ⇒ (⟨𝜎 ⇐ 𝜎𝑚⟩𝑀) (⟨𝐴 ⇐ 𝐴′⟩⟨𝜎 ⇐ 𝜎𝑛⟩𝑁) : 𝜎 !𝐵

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴′ Γ ∋ 𝜀@𝐴 { 𝐵 𝐴′ ≲ 𝐴 𝜎 = 𝜎𝑚
∼
∨{𝜀}

Γ ⊢ raise 𝜀 (𝑀𝑠) ⇒ let 𝑥 = ⟨𝜎 ⇐ 𝜎𝑚⟩𝑀 in ⟨𝜎 ⇐ {𝜀@𝐴 { 𝐵}⟩raise 𝜀 (⟨𝐴 ⇐ 𝐴⟩′𝑥) : 𝜎 !𝐵

Γ ⊢ 𝐶𝑠 ⇒ 𝐶 Γ ⊢ 𝜎𝑠 ⇒ 𝜎 Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴𝑚

Γ, 𝑥 : 𝐴 ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐶𝑛 𝜎𝑛 ≲ 𝜎 𝐶𝑛 ≲ 𝐶

dom(𝜙⇐) = dom(𝜙𝑠) (∀𝜀 ∈ dom(𝜙𝑠). ∃(𝜀@𝐴𝜀 { 𝐵𝜀) ∈ Γ.
Γ, 𝑥 : 𝐴𝜀 , 𝑘 : 𝐵𝜀 →𝜎 𝐶 ⊢ 𝜙𝑠 (𝜀) ⇒ 𝑁𝜀 : 𝜎𝜀 !𝐶𝜀

𝜎𝜀 ≲ 𝜎 ∧𝐶𝜀 ≲ 𝐶 ∧ 𝜙⇐ = ⟨𝜎 ⇐ 𝜎𝜀⟩⟨𝐶 ⇐ 𝐶𝜀⟩𝑁𝜀)
Γ ⊢ handleTy(𝜎𝑚, 𝜎, dom(𝜙𝑠)) = 𝜎 ′

𝑚

Γ ⊢ handle𝜎𝑠 !𝐶𝑠
𝑀𝑠 {ret 𝑥 .𝑁𝑠 | 𝜙𝑠 } ⇒ handle ⟨𝜎 ′

𝑚 ⇐ 𝜎𝑚⟩𝑀 {ret 𝑥 .⟨𝜎 ⇐ 𝜎𝑛⟩⟨𝐶 ⇐ 𝐶𝑛⟩𝑁 | 𝜙⇐} : 𝜎 !𝐶

dom(𝜎𝑐) ⊆ dom(𝜏𝑐) ∪ 𝜎𝑠

Γ ⊢ handleTy(𝜎𝑐 , 𝜏𝑐 , 𝜎𝑠) = 𝜏𝑐 ∪ Γ(𝜎𝑠)
Γ ⊢ handleTy(?, 𝜏𝑐 , 𝜎𝑠) = 𝜏𝑐 ∪ Γ(𝜎𝑠)

Γ ⊢ handleTy(𝜎𝑐 , ?, 𝜎𝑠) = 𝜎𝑐 |𝜎𝑠 ⊎ ⌈Γ(dom(𝜎𝑐) − 𝜎𝑠)⌉ Γ ⊢ handleTy(?, ?, 𝜎𝑠) = ?

Fig. 8. GrEff Typing/Elaboration, Expression Language

untracked types. Next, to import an effect from a different module, the types given for the effect

are checked to be compatible with the types declared in the other module. Here the compatibility

judgment 𝐴 ∼ 𝐴′
is defined as the conjunction of gradual subtyping in both directions, 𝐴 ≲ 𝐴′

and

𝐴′ ≲ 𝐴, to be defined soon. This ensures that any imports from that module using this effect name

will succeed. This effect name is added to the local names only, and not the signature, because it is

using an already allocated effect name. Next, defining a value simply elaborates the value and adds

its type to the output typing and associates the vlaue to that name. Importing a value is similar,

except that we check that the declared type is a gradual subtype, and so can be coerced by the cast

⟨𝐴 ⇐ 𝐴′⟩, whose definition will be described shortly.

11

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Next, we define the elaboration of the expression language in Figure 8. The judgment Γ ⊢ 𝑀𝑠 ⇒
𝑀 : 𝜎 !𝐴 says that under the typing of names given by Γ, the GrEff expression𝑀𝑠 elaborates to the

core GrEff function𝑀 , which will be well-typed with inferred effect type 𝜎 and value type 𝐴. All

forms essentially elaborate to similar forms in core GrEff, but with suitable casts inserted. First, we

define the translation of value type casts ⟨𝐴 ⇐ 𝐵⟩𝑀 and effect type casts ⟨𝜎 ⇐ 𝜏⟩𝑀 as an upcast

followed by a downcast. For the effect cast, these casts go through the dynamic effect type, but for

two value types there is no single most dynamic effect type so we again use the ceiling operation.

Note that this will only be well-typed in case ⌈𝐵⌉ = ⌈𝐴⌉, which is ensured whenever 𝐴 ≲ 𝐵, which

is a precondition for inserting a cast. This is not necessarily the most efficient implementation of

the cast, we discuss optimizations in Section 4.3

Next, Variables, boolean values and function values elaborate to themselves with an empty effect

type ∅. The let-binding form shows how different effect types are combined: the effect types of𝑀

and 𝑁 are combined using a gradual join

∼
∨, defined in the appendix, and casts are inserted into𝑀

and 𝑁 to give them this effect type. The ascription forms simply check that the appropriate kind of

type satisfies a gradual subtyping judgment and inserts a cast. This uses the elaboration of types

Γ ⊢ 𝐴𝑠 ⇒ 𝐴, defined below. The if rule checks that the condition has boolean type and gives the

output value type as the gradual join of the branches, and the output effect type as the gradual

join with the condition expression as well. The application rule is similar except that argument is

casted to have the type of the domain of the function and the effect type of the function is joined

with the effect types of the terms. Next, we have the raise form, which elaborates to a raise but

first let-binds the request term and casts the raise term to have an effect type that is the join of

the request term’s effect type and the operation’s type. This let-binding is useful here so that we

can cast the single operation separately from𝑀 , which doesn’t need a cast because in this case its

effect type will always be a subtype of 𝜎 Finally, we have the most complex case, the handle form.

The handle form elaborates to a handle form in the core language with casts inserted in each case

to make them agree with the ascribed value type 𝐶 and effect type 𝜎 . The request variables and

input to the continuations are given by looking up the effect in Γ, while the output is given by the

ascription. The most complex part of this elaboration is the cast needed for the scrutinee 𝑀 . In

the core language, we need that all of the effects that 𝑀 raises but are not caught by the handle

are in the output type 𝜎 . But when 𝜎 is dynamic and 𝑀 has concrete effect type or vice-versa,

this is not necessarily true, so in these cases a cast must be inserted that effectively handles all

of the “other” effects. This definition is given below in a special elaboration of handle scrutinees

sub-case Γ ⊢ handleTy(𝜎, 𝜏, 𝜎𝑠) = 𝜎𝑜 where the type 𝜎 is the elaborated type of the scrutinee, 𝜏 is

the elaborated type of the result of the handle expression, and 𝜎𝑠 is the set of effects caught by

the handler, where we write Γ(𝜎𝑠) for the map that looks up the currently associated types for

each operation in 𝜎𝑠 . If 𝜎 and 𝜏 are both precise collections of effects, then we check that all of the

effects it raises are either caught or still occur in the output type, and we insert a subtyping cast. If

𝜎 and 𝜎 ′
are both imprecise ? then we will use ? as the result type. If the type of the scrutinee is

precise, but the desired output type is dynamic, then we need to upcast all of the unhandled effect

operations to their dynamic versions. If the type of the scrutinee is dynamic but the output type is

precise, then we downcast to include only the union of the output effects and the caught effects,

otherwise erroring.

Finally, Figure9 describes the elaboration of types and gradual subtyping. Value and effect type

elaboration Γ ⊢ 𝐴 ⇒ 𝐵 is mostly structural except that the rule for concrete effect sets resolves the

request and response types of the effect operation based on the context Γ. Next, we describe the
mostly standard gradual subtyping of value types 𝐴 ≲ 𝐵 and effect types 𝜎 ≲ 𝜏 to determine when

a dynamic cast ⟨𝐵 ⇐ 𝐴⟩ or ⟨𝜏 ⇐ 𝜎⟩ would reduce to subtyping on the precise portions of the

12

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Γ ⊢ bool ⇒ bool

Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ ⊢ 𝐵𝑠 ⇒ 𝐵

Γ ⊢ 𝜎𝑠 ⇒ 𝜎

Γ ⊢ 𝐴𝑠 →𝜎𝑠 𝐵𝑠 ⇒ 𝐴 →𝜎 𝐵
Γ ⊢ ? ⇒ ?

dom(𝜎𝑐) = 𝜎𝑠
∀𝜀 ∈ 𝜎𝑐 . 𝜎𝑐 (𝜀) = Γ(𝜀)

Γ ⊢ 𝜎𝑠 ⇒ 𝜎𝑐

bool ≲ bool
𝐴′ ≲ 𝐴′ 𝜎 ≲ 𝜎 ′ 𝐵 ≲ 𝐵′

𝐴 →𝜎 𝐵 ≲ 𝐴′ →𝜎 ′ 𝐵′ ? ≲ 𝜎 𝜎 ≲ ?

∀𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎𝑐 .∃𝜀 : 𝐴𝜏 { 𝐵𝜏 ∈ 𝜏𝑐 .

𝐴𝜎 ≲ 𝐴𝜏 ∧ 𝐵𝜏 ≲ 𝐴𝜏

𝜎𝑐 ≲ 𝜏𝑐

Fig. 9. Gradual Subtyping and Type Elaboration

types. Note that we define gradual subtyping of types in the core language i.e., after elaboration,

so that we can compare effect types across module boundaries that use different typings for the

effect names. With this intuition, the definition is like that of subtyping, except that the dynamic

effect type is a gradual subtype and supertype than all other effect types. We conclude by noting

the following syntactic properties of elabortation, which follow by structural induction.

Lemma 3.1. If · | 𝑃 ⊢ Σ ⇒ 𝑀 ⊢𝐴 𝜎 : and · | 𝑃 ⊢ Σ′ ⇒ 𝑀 ′ ⊢𝐴′ 𝜎 ′
: then Σ = Σ′

and 𝑀 = 𝑀 ′
and

𝜎 = 𝜎 ′
and 𝐴 = 𝐴′

.

Lemma 3.2. Well-formedness of Elaborated Programs If · | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴, then Σ | · ⊢𝜎 𝑀 : 𝐴.

4 AXIOMATIC AND OPERATIONAL SEMANTICS
Next we turn to the semantic aspects of GrEff: how expressions are evaluated, what simplifica-

tions/optimizations are correct to perform, and that the graduality principle holds for the language.

We formalize these three aspects by defining an axiomatic semantics in the form of an inequational

theory for reasoning about Core GrEff programs. That is, we define a notion of inequality𝑀 ⊑ 𝑁

between expressions called term precision, which is a kind of extension of the notion of type

precision to expressions. The semantic interpretation of this inequality is that 𝑀 has the same

behavior as 𝑁 with respect to output and termination, except in that it may raise a dynamic type

error when 𝑁 does not. From this notion inequality we get an induced equivalence relation𝑀 ≡ 𝑁

that specifies when𝑀 and 𝑁 have the same behavior. Term precision and the induced equivalence

are used to model our desired semantic ideas: an expression𝑀 can be evaluated to a value 𝑉 when

the equivalence 𝑀 ≡ 𝑉 holds, 𝑀 can be simplified/optimized to 𝑁 when 𝑀 ≡ 𝑁 holds, and the

graduality principle states that when𝑀 is rewritten in the surface language to some𝑀 ′
that has

more precise typing information, than a corresponding relationship𝑀 ′ ⊑ 𝑀 should hold: adding

more precise type information results in more precise dynamic type checking. With this in mind,

we axiomatize the valid optimizations known from effect handlers as well as desired inequalities

from prior work on graduality in our inequational theory.

Axioms are only useful if we can construct models in which they are satisfied. For GrEff, we

do this by constructing an operational semantics that specifies more precisely how to evaluate

programs and then define notions of observational equivalence and an error ordering to model

≡ and ⊑ and prove that all of the axioms are valid in this operational model. We will construct

this operational semantics, based on the axiomatics: we show in Section 4.2 that every reduction

𝑀 ↦→ 𝑁 is justified by a provable equivalence𝑀 ≡ 𝑁 in the inequational theory. For many rules

this is very straightforward, e.g., 𝛽 reduction of functions is justified by a corresponding 𝛽 equation.

The most utility we get from the axioms in this case is for the cast reductions: cast reductions for

13

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

handlers are justified not by a direct corresponding rule in the axioms, but instead by extensionality

(𝜂) principles for handlers combined with a least upper bound/greatest lower bound property of

casts identified in prior work as being key to the graduality property [16]. This shows that the

operational behavior we define has a canonical status: if certain optimizations for handlers are to

be valid, and the graduality property is desired, then the cast reductions we define must be used.

4.1 Axiomatic Semantics
We present a selection of the rules of the inequational theory of term precision in Figure 10. The full

rules are provided in the appendix. The form of the inequality judgment is Γ⊑ ⊢𝜎⊑𝜏 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵,

which says that𝑀 is more precise, or, roughly, “errors more” than 𝑁 . This is a kind of heterogeneous

inequality relation in that 𝑀 and 𝑁 are not required to have the same type: 𝑀 must have value

type 𝐴 and effect type 𝜎 and 𝑁 must have value type 𝐵 and effect type 𝜏 under the context Γ⊑ and

𝐴 ⊑ 𝐵 and 𝜎 ⊑ 𝜏 must hold. We allow for 𝑀 and 𝑁 to be open terms, typed with respect to the

typing context Γ⊑ . The typing context Γ⊑ is like an ordinary typing context Γ, except that variables
are typed 𝑥 : 𝐴 ⊑ 𝐵 where the left type 𝐴 is the type 𝑥 has in the left term𝑀 and 𝐵 is the type for

𝑁 . For the context to be well formed, each of the 𝐴 ⊑ 𝐵 must be provable.

First, we add an axiom that ℧ is the least term of any type, to model the graduality property.

Next, we add an axiom that ⊑ is transitive, where both the value and effect type are allowed to

vary simultaneously. The relation is reflexive as well, but this is admissible from congruence rules.

Secondly, we give the congruence rules for functions and application, and the full system includes

such a congruence rule for all term constructors. Next we have computation (𝛽) and reasoning (𝜂)

rules for each type. For functions and if, these are standard call-by-value 𝛽𝜂 rules, so we instead

show only the handle rules. There are two 𝛽 rules for handle. If the term being handled is a value,

then the return clause is used. If the term being handled is a raise of an effect 𝜀, it is equivalent to the

handler clause 𝜙 (𝜀) where the continuation is the captured continuation surrounding the original

handler term. We require this to be a let, but note that we have additional rules that imply that

any evaluation context that doesn’t handle can be re-written as a let. We then have two reasoning

(𝜂) rules for handle. First, if𝑀 is handled by a handler with no effect clauses, then the handler is

equivalent to a let-binding. Second, we have a rule that says that any clause that simply re-raises

its operation with the same continuation it was passed can be dropped from the handler, as this is

the same behavior as not catching the term at all. We next show rules describing the interaction of

subtyping with value type casts, the full system includes analogous rules for effect types. The first

says that an upcast followed by a subtyping coercion is less than a subtyping coercion followed by

an upcast, and the downcast rule is similar. Finally, we have rules specifying the behavior of value

and effect casts. These rules characterize upcasts as least upper bounds and downcasts as greatest

lower bounds. The first rule shows that the downcast is a lower bound and the second that it is the

greatest. The upcasts have similar rules, and we include analogous rules for effect casts as well.

4.2 Operational Semantics
Next, we show a selection of the rules of the operational semantics𝑀 ↦→ 𝑀 ′

in Figure 11, eliding the

standard call-by-value rules for booleans, functions and let-bindings. We capture the left-to-right,

call-by-value evaluation order by using evaluation contexts defined in Section 3.1. First, we have the

𝛽 rules for handlers: when handling a value, execute the return clause. Next, when a raise occurs, we

search for the closest enclosing handler that handles the raised effect and capture the intermediate

evaluation context in the continuation passed to the appropriate handler.. We capture this with the

relation 𝐸′
#𝜀 which says that the evaluation context does not handle the given operation.

The next rules concern the behavior of effect casts. First, all effect casts are the identity on

values. Next, when upcasting a raise, we re-raise the effect, but upcast the request and downcast

14

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Γ ⊢𝜎 𝑀 : 𝐴

Γ ⊢𝜎⊑𝜎 ℧ ⊑ 𝑀 : 𝐴 ⊑ 𝐴

Γ⊑ ⊢𝜎1⊑𝜎2 𝑀1 ⊑ 𝑀2 : 𝐴1 ⊑ 𝐴2 Γ′⊑ ⊢𝜎2⊑𝜎3 𝑀2 ⊑ 𝑀3 : 𝐴2 ⊑ 𝐴3

rhs(Γ⊑) = lhs(Γ′⊑) lhs(Γ⊑) = lhs(Γ′′⊑) rhs(Γ′⊑) = rhs(Γ′′⊑)
Γ′′⊑ ⊢𝜎1⊑𝜎3 𝑀1 ⊑ 𝑀3 : 𝐴1 ⊑ 𝐴3

Γ⊑, 𝑥 : 𝐴 ⊑ 𝐴′ ⊢𝜏⊑𝜏 ′ 𝑀 ⊑ 𝑀 ′
: 𝐵 ⊑ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝜆𝑥.𝑀 ⊑ 𝜆𝑥.𝑀 ′
: 𝐴 →𝜏 𝐵 ⊑ 𝐴′ →𝜏 ′ 𝐵

′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑀 ′
: 𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑁 ⊑ 𝑁 ′
: 𝐴 ⊑ 𝐴′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 𝑁 ⊑ 𝑀 ′ 𝑁 ′
: 𝐵 ⊑ 𝐵′

handle 𝑉 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑦/𝑣] handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙}
≡ 𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]

handle 𝑀 {ret 𝑥 .𝑁 | ∅} ≡ let 𝑥 = 𝑀 in 𝑁

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀)
∀𝜀 ∈ dom(𝜓).𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))

handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 } : 𝜎 !𝐵

𝐴 ≤: 𝐴′ 𝐵 ≤: 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐴

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵′ ↢ 𝐴′⟩𝑁 : 𝐵′

𝐴 ≤: 𝐴′ 𝐵 ≤: 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐴′
↞ 𝐵′⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊢𝜎 𝑁 : 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴

Fig. 10. Axiomatic Semantics

the response according to the types in the output effect type. An effect downcast works dually

if the effect occurs in the result effect type. However, if the effect does not occur in the output

effect type (which can only occur if the input effect type is ?), then an error is raised. Finally, we

have the function downcast. Recall that a function cast applied to a value itself is a value, and only

reduces when applied to a value. When this occurs in a downcast, as shown, the result reduces

to applying the original function to an upcasted version of the input and downcast of the output,

where this time we cast both value and effect types. Note the order of the value and effect casts on

the output is arbitrarily chosen: because value casts only affect values and effect casts only affect

effect operations, the two possible orders are equivalent. The elided cast for function upcasts is

precisely dual, and finally there is a trivial cast rule for the identity cast on booleans.

We conclude the operational semantics with the following theorem, which establishes that the

operational rules are in a sense necessary to any system that satisfies our axiomatic semantics

(proof in the appendix).

Theorem 4.1. If · ⊢∅ 𝑀, 𝑁 : 𝐴 and𝑀 ↦→ 𝑁 then𝑀 ≡ 𝑁 is provable in the axiomatic semantics.

4.3 Subtyping, Gradual Subtyping and Coercions
The elaboration defined in Section 3.2 inserts casts of the form ⟨𝐴 ↞ ⌈𝐴⌉⟩⟨⌈𝐵⌉ ↢ 𝐵⟩𝑀 when a

gradual subtyping 𝐴 ≲ 𝐵 is used in the type-checker. If we think of ⌈𝐴⌉ as the type of programs in

the untracked language, this says to cast a program from one type to another, we should cast it to an

untracked type and then to the other effect-tracking type, similar to prior work on cast calculi based

on upcasts and downcasts [14]. This is a reasonable cast if we think of the untracked language as

15

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

𝐸 [handle 𝑉 {ret 𝑥 .𝑁 | 𝜙}] ↦→ 𝐸 [𝑁 [𝑉 /𝑥]]
𝜀 ∈ dom(𝜙) 𝐸′

#𝜀

𝐸 [handle 𝐸′ [raise (𝜀@𝐴 { 𝐵) (𝑉)] {ret 𝑥 .𝑁 | 𝜙}]
↦→ 𝐸 [𝜙 (𝜀) [𝑉 /𝑥] [(𝜆𝑦.handle (𝐸′ [𝑦]) {ret 𝑥 .𝑁 | 𝜙})/𝑘]]

𝐸 [(𝜆𝑥 .𝑀)𝑉] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]] 𝐸 [let 𝑥 = 𝑉 in 𝑀] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝑉] ↦→ 𝐸 [𝑉]
𝜖@𝐴′ { 𝐵′ ∈ 𝜎 ′ 𝐸′

#𝜖

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [raise (𝜖@𝐴 { 𝐵) (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜖 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [𝑥]]

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝑉] ↦→ 𝐸 [𝑉]
𝜖@𝐴 { 𝐵 ∈ 𝜎 𝐸′

#𝜖

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [raise (𝜖@𝐴′ { 𝐵′) (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜖 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [𝑥]]

𝜖@𝐴 { 𝐵 ∉ 𝜎 𝐸′
#𝜖

𝐸 [⟨𝜎 ↞ ?⟩𝐸′ [raise (𝜖@𝐴′ { 𝐵′) (𝑉)]] ↦→ ℧
𝐸 [(⟨(𝐴 →𝜎 𝐵) ↞ (𝐴′ →𝜎 ′ 𝐵′)⟩𝑉𝑓)𝑉] ↦→
𝐸 [⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜎 ′⟩(𝑉𝑓 ⟨𝐴′ ↢ 𝐴⟩𝑉)]

Fig. 11. Operational semantics of Core GrEff

our “operational ground truth”, and so we should prove that any other translation is extensionally

equivalent to this one. However, operationally, this can be quite a wasteful translation, as a cast can

result in proxying at runtime, while subtyping coercions have no runtime behavior, and so are zero

cost. For instance, if 𝐴 ≲ 𝐵 is true because in fact 𝐴 ≤: 𝐵, then there need not be any runtime cast

at all. For this reason, we would prefer to optimize the cast based on the subtyping information in

the proof of 𝐴 ≲ 𝐵 Since 𝐴 may be more imprecise than 𝐵 in some subterms and vice-versa, the

structure of the cast should still be an upcast followed by a downcast, but with the possibility that we

use implicit subtyping coercions at some points. There are three places we might insert the implicit

subtyping coercion: before the upcast, between the upcast and downcast and after the downcast.

From the proof of 𝐴 ≲ 𝐴′
, we can extract types and subtyping/precision derivations as in Figure 12.

𝐴ℎ 𝐷ℎ 𝐵

𝐴 𝐷𝑙 𝐵𝑙⊑ ⊒

⊑ ⊒

≤: ≤:≤:

Fig. 12. Situation derivable from
𝐴 ≲ 𝐵

On the left we have a “pure subtyping” component of the grad-

ual subtpying proof coming from 𝐴, and on the right we we

have the pure subtyping component coming from 𝐵. In the mid-

dle we have two “dynamic” types also related by subtyping.

There are then three paths from 𝐴 to 𝐴′
in this diagram, which

generate three different potential casts with implicit subtyping

coercions ensuring they are well-typed as taking 𝐴 to 𝐴′
: (1) Up

and then right twice ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ
↢ 𝐴ℎ⟩ (2) Right, up and

then right: ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷𝑙
↢ 𝐴⟩ (3) Right twice and then up:

⟨𝐵𝑙 ↞ 𝐷𝑙 ⟩⟨𝐷𝑙
↢ 𝐴⟩ Fortunately we can choose whichever is

operationally preferable: each of these casts is equivalent as a function from 𝐴 to 𝐵 and they are all

equivalent to the ground truth cast ⟨𝐴′
↞ ⌈𝐴⌉⟩⟨⌈𝐴⌉ ↢ 𝐴⟩. The above discussion applies equally

well to effect casts, which are even simpler in that the “ground-truth” always factors through the a

single most imprecise effect type: the dynamic effect type.

16

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

5 SOUNDNESS AND GRADUALITY
In this section we establish that the axiomatic semantics of core GrEff has a sound model in terms

of its operational semantics. This establishes two key properties: equivalent terms (𝑀 ≡ 𝑁) are

contextually equivalent in the operational semantics, and the graduality property holds. First, we

review the definition of the graduality property, and then we give a logical relations model and

prove that any provable inequality𝑀 ⊑ 𝑁 implies that the terms are related in the logical relation.

5.1 Static and Dynamic Gradual Guarantees
GrEff is designed to support a smoothmigration from imprecise to precise typing. The static gradual

guarantee [21] formalizes a syntactic element of this idea of a smooth migration. The static gradual

guarantee informally says that increasing the precision of type annotations on a program can

only make it harder to satisfy the static type checker, or viewed the other way around, decreasing

the precision of type annotations can only make it easier to satisfy the static type checker. Then

the dynamic gradual guarantee, also known as graduality, establishes the semantic counterpart:

increasing the precision of type annotations on a program should only make it harder to terminate

without a dynamic type error, and furthermore except where there are dynamic type errors, the

behavior of the program should match the original. These properties can be formalized as a form

of monotonicity of the elaboration of the syntactic programs of surface GrEff into the semantically

meaningful core GrEff programs as follows. First, we define a syntactic term precision ordering

⊑syn
on untyped GrEff programs as the congruence closure of the type precision ordering. Then

the static gradual guarantee says that this is a monotone partial function:

Theorem 5.1 (Static Gradual Guarantee). If 𝑃 ⊑syn 𝑃 ′
, then if · | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴, then

there exist𝑀 ′, 𝜎 ′, 𝐴′
such that · | · ⊢ 𝑃 ′ ⇒ Σ ⊢𝜎 ′ 𝑀 ′

: 𝐴′
such that Σ ⊢ 𝑀 ⊑ 𝑀 ′

: (𝜎 ⊑ 𝜎 ′) ! (𝐴 ⊑ 𝐴′)

Then the dynamic gradual guarantee says that this extends to monotonicity in the following

semantic ordering on core GrEff terms:

Definition 5.2 (Error Ordering on Closed Programs). Given · ⊢∅ 𝑀,𝑀 ′
: bool, define𝑀 ⊑sem 𝑀 ′

to hold when one of the following is satisfied (1)𝑀 ↦→∗ ℧, (2)𝑀 ⇑ and𝑀 ′ ⇑, (3)𝑀 ↦→∗ true and
𝑀 ′ ↦→∗ true (4)𝑀 ↦→∗ false and𝑀 ′ ↦→∗ false.

Theorem 5.3 (Dynamic Gradual Guarantee). If Σ | · ⊢∅⊑∅ 𝑀 ⊑ 𝑀 ′
: bool, then𝑀 ⊑sem 𝑀 ′

.

This theorem is stated in terms of closed terms of a fixed type, but to prove it we need a

stronger inductive hypothesis, i.e., the logical relation for open terms. The resulting theorem that

any inequation provable in the theory implies the semantic ordering is called graduality, as it

is analogous in structure to the parametricity theorem in parametric polymorphism. Then the

dynamic gradual guarantee follows as a corollary.

5.2 Logical Relation
In Figure 13, we present the definition of the step-indexed logical relation for graduality. Following

prior work on logical relations for graduality, the relation is indexed not by types, but by derivations

of type precision facts, i.e., proof terms for 𝑐 : 𝐴 ⊑ 𝐵 or 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
. We present the definition of

these proof terms in the appendix. For a type precision derivation 𝑑 , define 𝑑𝑙 and 𝑑𝑟 to be the

types such that 𝑑 : 𝑑𝑙 ⊑ 𝑑𝑟 , and analogously for effect types.

Many of the details are similar to prior work, especially [15], so we highlight the aspects that

are novel: the handling of effect types and subtyping. First, our logical relation refers to effect

types in addition to value types. Next, in addition to the usual expression and value relations,

we have also a result relation and a continuation relation. In our language, a result is either a

17

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ⇐⇒ 𝑗 = 0 ∨ (𝑗 = 𝑘 + 1 ∧ (𝑀1, 𝑀2) ∈ 𝑅𝑘)
(𝑉1,𝑉2) ∈ V∼

𝑗 ⟦bool⟧ ⇐⇒ (𝑉1,𝑉2) ∈ VAtom bool ∧ (𝑉1 = 𝑉2 = true) ∨ (𝑉1 = 𝑉2 = false)
(𝑉1,𝑉2) ∈ V∼

𝑗 ⟦𝑑𝑖 →𝑑𝜎 𝑑𝑜⟧ ⇐⇒ (𝑉1,𝑉2) ∈ VAtom𝑑𝑖 →𝑑𝜎 𝑑𝑜∧
∀𝑘 ≤ 𝑗 .∀(𝑉𝑖1,𝑉𝑖2) ∈ V∼

𝑘
⟦𝑑𝑖⟧.

(𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈ E∼
𝑘
⟦𝑑𝜎⟧(V∼⟦𝑑𝑜⟧)

(𝑀1, 𝑀2) ∈ E⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 ∧ (𝑀1 ↦→𝑗+1

∨(∃𝑘 ≤ 𝑗 . (𝑀1 ↦→𝑗−𝑘 ℧)
∨(∃(𝑁1, 𝑁2) ∈ R⪯

𝑘
⟦𝑑𝜎⟧𝑅 ∧𝑀1 ↦→𝑗−𝑘 𝑁1 ∧𝑀2 ↦→∗ 𝑁2)))

(𝑀1, 𝑀2) ∈ E⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 ∧ (𝑀2 ↦→𝑗+1

∨(∃𝑘 ≤ 𝑗 .(𝑀2 ↦→𝑗−𝑘 ℧ ∧𝑀1 ↦→∗ ℧)
∨(∃𝑁2 .𝑀2 ↦→𝑗−𝑘 𝑁2 ∧𝑀1 ↦→∗ ℧)
∨(∃(𝑁1, 𝑁2) ∈ R⪰

𝑘
⟦𝑑𝜎⟧𝑅 ∧𝑀2 ↦→𝑗−𝑘 𝑁2 ∧𝑀1 ↦→∗ 𝑁1)))

(𝑀1, 𝑀2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎∧

((val(𝑀1) ∧ val(𝑀2) ∧ (𝑀1, 𝑀2) ∈ 𝑅 𝑗)
∨(∃𝜖 : 𝑐 { 𝑑 ∈ 𝑑𝜎 , 𝐸

𝑙
#𝜖, 𝐸𝑟#𝜖,𝑉 𝑙 ,𝑉 𝑟 .

(𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐⟧) 𝑗∧
(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑⟧) 𝑗
(E∼⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), (𝑑𝑙𝜎 !𝐴𝑙), (𝑑𝑟𝜎 !𝐴𝑟))∧

𝑀1 = 𝐸𝑙 [raise 𝜖 (𝑉 𝑙)] ∧𝑀2 = 𝐸𝑟 [raise 𝜖 (𝑉 𝑟)]))
(𝑥𝑙 .𝑀𝑙 , 𝑥𝑟 .𝑀𝑟) ∈ ⇐⇒ (𝑀𝑙 , 𝑀𝑟) ∈ ECtxAtom 𝑐 (𝜎𝑙 !𝐴𝑙) (𝜎𝑟 !𝐴𝑟)∧

K∼
𝑗 ⟦𝑐⟧(𝑆, (𝜎𝑙 !𝐴𝑙), (𝜎𝑟 !𝐴𝑟)) ∀𝑘 ≤ 𝑗 .(𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘
⟦𝑐⟧.(𝑀𝑙 [𝑉 𝑙/𝑥𝑙], 𝑀𝑟 [𝑉 𝑟/𝑥𝑟]) ∈ 𝑆𝑘

(𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧ ⇐⇒ ∀(𝑥1 ⊑ 𝑥2 : 𝑐) ∈ Γ⊑ .(𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼

𝑗 ⟦𝑐⟧

Fig. 13. Logical Relation

value, or an evaluation context 𝐸 wrapping a raise of an effect 𝜀, such that 𝐸 is apart from 𝜀. The

result relation specifies the conditions for two such results to be related. Notable here is the use

of the later modality when specifying when two wrapped raise terms are related. The intuition

is that we only require the values being raised, and the evaluation contexts wrapping the raises,

to be related one step later. Finally, the relations are parameterized by precision derivations. In

the case of the expression and result relations, this is an effect precision derivation, while for

values and continuations, it is a value type precision derivation. This is analogous to the usual

approach whereby logical relation is indexed by a type. But instead of using types, we use precision

derivations, i.e., the proof that the LHS term is more precise than the type of the RHS term.

As in previous work on logical relations for graduality, the expression logical relation E∼⟦·⟧ is

split into two relations E⪯⟦·⟧ and E⪰⟦·⟧. The former counts the steps taken by the left-hand term,

while the latter counts steps taken by the right-hand term. Despite needing two relations, we are

for the most part able to abstract over their differences: most of the lemmas we prove hold for both

relations with no adjustment needed. Notable exceptions are transitivity and the anti- and forward

reduction lemmas: these lemmas make crucial use of step counting, so naturally the side whose

steps we are counting makes a difference.

Given a step-indexed relation 𝑅, we define an operator ▶𝑅 (pronounced “later 𝑅”) as follows:

Terms𝑀1 and𝑀2 are related in ▶𝑅 at index 𝑛 if and only if either 𝑛 is zero, or 𝑛 ≥ 1 and𝑀1 and

𝑀2 are related in 𝑅 at index 𝑛 − 1.

18

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

One novel aspect of our logical relation is the result relation R∼⟦·⟧. This relation relates terms

𝑀1 and𝑀2 – of type 𝐴𝑙
and 𝐴𝑟

respectively – representing either two values or two “evaluations”

of raised operations. The relation is parameterized by a step-indexed relation 𝑅 between values

of type 𝐴𝑙
and 𝐴𝑟

(the types of𝑀1 and𝑀2).𝑀1 and𝑀2 are related by R∼⟦·⟧ when either (1) both

terms are values and are related by 𝑅 at the appropriate step index, or (2) there exists an effect 𝜖 in

𝑑𝜎 , values related later, and evaluation contexts (i.e., continuations – see below) related later, such

that𝑀1 is equal to raising the effect and then wrapping it in the continuation, and likewise for𝑀2.

The relation K∼⟦·⟧ relates evaluation contexts 𝐸1 and 𝐸2 representing continuations that accept

values. The evaluation contexts each have a hole • – the type of the hole is the type of the input

value to the continuation. To enforce that the continuations accept values only, and not arbitrary

terms, the inputs to the continuation relation are actually terms 𝑀𝑙
and𝑀𝑟

with free variables 𝑥𝑙

and 𝑥𝑟 , respectively. 𝐸1 and 𝐸2 also have “output” types (𝐴𝑙
and 𝐴𝑟

) and “output” effect sets (𝜎𝑙 and

𝜎𝑟). When values are plugged into 𝐸1 and 𝐸2, the result is two terms having types 𝐴𝑙
and 𝐴𝑟

and

effect sets 𝜎𝑙 and 𝜎𝑟 , respectively.

5.3 Proof of Graduality
Our goal is to prove that the inequational theory is sound with respect to the logical relation. First

we define the notion of two terms being related semantically:

Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐 := ∀ ∼ ∈ {<, >}.∀𝑗 ∈ N.∀(𝛾1, 𝛾2) ∈ V∼
𝑗 ⟦Γ⟧.(𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V
∼⟦𝑐⟧.

That is, 𝑀1 and 𝑀2 are related if for all 𝑗 and all substitutions of values 𝛾1 and 𝛾2 related at 𝑗 ,

the resulting terms are related in E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧, where this needs to hold both when ∼ is < and

when it is >. Our goal is then to prove the following:

Theorem 5.4 (Graduality). If Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 then Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 ∈ 𝑐

We provide here a high-level overview of the proof; the complete proofs are in the appendix.

We begin by establishing lemmas that are used in the remaining proofs. Noteworthy here are the

reduction lemmas (anti- and forward-reduction), and the monadic bind lemma. These lemmas are

largely standard, having appeared in previous work on step-indexed logical relations. However, our

monadic bind lemma must also deal with the case where the terms in question are related raises.

Another important principle is that of Löb induction (Lemma D.16), which states that if from the

assumption that a proposition holds “later" it follows that it holds now, then the proposition holds

now. This boils down to induction on the step index, but it is convenient to work with the later

modality as it eliminates much of the tedious reasoning about step indexing. Löb induction is used

in proofs involving handling a raised effect, as well as those involving an effect cast, as these are the

cases of the operational semantics for which step indexing is necessary in order to be well-founded.

With these lemmas, we first prove soundness of each of the congruence rules for term precision.

All of the proofs are straightforward uses of the monadic bind lemma along with the reduction

lemmas. Next, we prove soundness of the rules of the equational theory, e.g., the 𝛽 and 𝜂 laws, and

transitivity. Finally, we prove soundness of the rules for casts and subtyping.

6 DISCUSSION
Prior Work on Gradual Effects. The most significant prior work on gradual effects is Bañados

Schwerter et al. [1], which defined a gradual effect system based on the generic effect calculus of

Marino and Millstein [13] using an early version of the abstracting gradual typing (AGT) framework

for gradual type systems[7]. While we based GrEff on effect handlers rather than the generic

effect calculus, there are significant similarities in the typing: function types and typing judgments

are indexed by a set of effect operations in each system. The most significant difference is that

19

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

their framework is parameterized by a fixed effect theory, whereas GrEff has explicit support for

declaration of new effects in the program. They additionally support a “gradual row” effect which

tracks that some effects a term raised are known only to ever use certain types but there is no

information on other effects . The presence of this type does not change the semantics of runtime

casts, but may be useful to express certain optimizations.

Another related area of research is on gradual typing with delimited continuations, which are

mutually expressible with effect handlers [5, 18]. Takikawa et al ([25]) propose a gradual type system

and semantics via contracts for a language with delimited continuations using typed prompts.

They consider only value types and untracked function types that do not say which prompts

are expected to be present. They show that a naive contract based implementation is unsound

because a dynamically typed program can interact with a typed prompt and thereform the prompts

themselves must be equipped with contracts, even though it does not correspond to any value

being imported. In core GrEff, this unsoundness is ruled out by using intrinsic typing: the problem

corresponds to raising an effect operation with a different type than the type expected by the

closest handler, which is precisely what the effect type system tracks. Wrapping the prompt in

contracts is behaviorally equivalent to what is achieved by our effect type casts. Sekiyama, Ueda

and Igarashi present a blame calculus for a language with shift and reset [20]. The blame calculus

is analogous to our core GrEff language, and uses a type and effect system for the answer types of

shift/reset. They do not develop a surface language that elaborates to this blame calculus like our

GrEff, and there is no analogue of effect operations in shift/reset-based systems so there are no

nominal aspects of their language. Additionally, while they have an effect system to keep track of

answer types, they do not have effect casts.

Prior Approaches to Gradual Nominal Datatypes. We are also not the first to consider the combi-

nation of gradual and nominal typing. The closest match to our design is in Typed Racket’s support

for typed structs. In Racket, a struct is a kind of record type that (by default) is generative in that it

creates a new type tag distinct from all others. Typed Racket supports import of untyped Racket

structs into Typed Racket, where types are assigned to the fields, and values of the struct type

are then wrapped in contracts accordingly. This is quite close to our treatment of nominal effect

operations which can be thought of as adding new cases to the dynamic effect monad rather than

dynamic type. Our type system is more complex however, since in our system modules can use

dynamically typed effects whereas in Typed Racket, there is no syntactic type for dynamially typed

values, when imported into typed code the system must give a completely precise type. Malewski

et al ([12]) present a design for gradual typing with nominal algebraic datatypes. Their focus is on

the gradual migration from datatypes whose cases are open-ended to datatypes with a fixed set

of constructors. They do not consider use-case we have where different modules have different

typings for the same nominal constructor.

Extensions. GrEff is a simplified model of typed algebraic effects, and there are several natural

extensions that would be useful to model. A natural extension would be to include recursive effect

types, which would allow us to provide precise static types for our example of a threading library

where any forked threads can freely fork additional threads itself, which in GrEff is only possible

to arbitrary depth using dynamic effect typing. Additionally, many typed functional languages that

we may want to extend with effect typing in this way use Hindley-Milner-style polymorphic type

schemes, which GrEff does not support. Possibly we can build on previous work for gradual typing

in unification-based type systems[6, 23].

Another simplification in the design of GrEff is that is supports only static declarations of

effect operations at the top-level of a module. In contrast, SML supports dynamic creation of

new exceptions at runtime, so that the exception type is a kind of runtime-extensible sum type.

20

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Interesting future work would be to modify prior graduality proofs for runtime-extensible dynamic

to support runtime effect declaration [15].

REFERENCES
[1] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In Proceedings of

the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP ’14). 283–295.

[2] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effekt: Capability-passing style for

type- and effect-safe, extensible effect handlers in Scala. J. Funct. Program. 30 (2020), e8. https://doi.org/10.1017/

S0956796820000027

[3] WasmFX Contributors. [n.d.]. WasmFX: Effect Handlers for WebAssembly. https://wasmfx.dev/ Accessed: 2020-11-10.

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In Formal

Methods for Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Netherlands, November

7-10, 2006, Revised Lectures (Lecture Notes in Computer Science, Vol. 4709). 266–296. https://doi.org/10.1007/978-3-540-

74792-5_12

[5] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined

effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. https://doi.org/10.

1017/S0956796819000121

[6] Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January

15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 303–315. https://doi.org/10.1145/2676726.2676992

[7] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In ACM Symposium on Principles

of Programming Languages (POPL).

[8] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September 23-24, 2013. ACM, 59–70.

https://doi.org/10.1145/2503778.2503791

[9] Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In ACM Symposium on Principles of Programming

Languages (POPL).

[10] Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Proceedings 5th Workshop on Mathe-

matically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014 (EPTCS, Vol. 153).

100–126. https://doi.org/10.4204/EPTCS.153.8

[11] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM, 500–514.

https://doi.org/10.1145/3009837.3009897

[12] Stefan Malewski, Michael Greenberg, and Éric Tanter. 2021. Gradually structured data. Proc. ACM Program. Lang. 5,

OOPSLA (2021), 1–29. https://doi.org/10.1145/3485503

[13] Daniel Marino and Todd D. Millstein. 2009. A generic type-and-effect system. In Proceedings of TLDI’09: 2009 ACM

SIGPLAN International Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24,

2009, Andrew Kennedy and Amal Ahmed (Eds.). ACM, 39–50. https://doi.org/10.1145/1481861.1481868

[14] Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. In International Conference on

Functional Programming (ICFP), St. Louis, Missouri.

[15] Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and parametricity: together again for the first time.

Proc. ACM Program. Lang. 4, POPL (2020), 46:1–46:32. https://doi.org/10.1145/3371114

[16] Max S. New and Daniel R. Licata. 2018. Call-by-name Gradual Type Theory. In Formal Structures for Computation and

Deduction, Oxford England.

[17] Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. In ACM Symposium on Principles of

Programming Languages (POPL), Cascais, Portugal.

[18] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control.

In 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,

Dortmund, Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

30:1–30:16. https://doi.org/10.4230/LIPIcs.FSCD.2019.30

[19] Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems,

18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502).

80–94. https://doi.org/10.1007/978-3-642-00590-9_7

[20] Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. 2015. Shifting the Blame - A Blame Calculus with Delimited

Control. In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November

21

https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1017/S0956796820000027
https://wasmfx.dev/
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3485503
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1145/3371114
https://doi.org/10.4230/LIPIcs.FSCD.2019.30
https://doi.org/10.1007/978-3-642-00590-9_7

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

30 - December 2, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9458), Xinyu Feng and Sungwoo Park (Eds.).

Springer, 189–207. https://doi.org/10.1007/978-3-319-26529-2_11

[21] Jeremy Siek, Micahel Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In

1st Summit on Advances in Programming Languages (SNAPL 2015).

[22] Jeremy G. Siek andWalid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming

Workshop (Scheme). 81–92.

[23] Jeremy G. Siek and Manish Vachharajani. 2008. Gradual typing with unification-based inference. In Proceedings of

the 2008 Symposium on Dynamic Languages, DLS 2008, July 8, 2008, Paphos, Cyprus, Johan Brichau (Ed.). ACM, 7.

https://doi.org/10.1145/1408681.1408688

[24] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation, Virtual Event, Canada, June 20-25, 2021. ACM, 206–221. https://doi.org/10.1145/3453483.3454039

[25] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. 2013. Constraining Delimited Control with

Contracts. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer,

229–248. https://doi.org/10.1007/978-3-642-37036-6_14

[26] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In ACM

Symposium on Principles of Programming Languages (POPL), San Francisco, California.

22

https://doi.org/10.1007/978-3-319-26529-2_11
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-642-37036-6_14

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Σ ⊢ bool : bool ⊑ bool
Σ ⊢ 𝑑𝑖 : 𝐴 ⊑ 𝐴′ Σ ⊢ 𝑑𝑒 : 𝜎 ⊑ 𝜎 ′ Σ ⊢ 𝑑𝑜 : 𝐵 ⊑ 𝐵′

Σ ⊢ 𝑑𝑖 →𝑑𝑒 𝑑𝑜 : 𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′

Σ ⊢ ? : ? ⊑ ?

supp(𝑑𝑐) = supp(𝜎𝑐) = supp(𝜎 ′
𝑐)

(∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 , 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 , 𝜀 : 𝐴
′ { 𝐵′ ∈ 𝜎 ′

𝑐 .

Σ ⊢ 𝑐 : 𝐴 ⊑ 𝐴′ Σ ⊢ 𝐵 ⊑ 𝐵′)
Σ ⊢ 𝑑𝑐 : 𝜎𝑐 ⊑ 𝜎 ′

𝑐

Σ ⊢ 𝑑𝑐 : 𝜎𝑐 ⊑ Σ|supp(𝜎𝑐)
Σ ⊢ inj(𝑑𝑐) : 𝜎𝑐 ⊑ ?

𝜀 : 𝑐 { 𝑑 ∈∈ Σ

Σ ⊢ 𝜀 : 𝑐 { 𝑑 ∈ ?

Σ ⊢ 𝜀 : 𝑐′ { 𝑑 ′ ∈ 𝑑𝑐 𝑐 = inj(𝑐′) 𝑑 = inj(𝑑 ′)
Σ ⊢ 𝜀 : 𝑐 { 𝑑 ∈ inj(𝑑𝑐)

Fig. 14. Type and Effect Precision Derivations

A SYNTAX AND ELABORATION
We give a term assignment for effect precision in Figure 14. In it we use the notion of an effect

operation being in a precision derivation 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 . For when 𝑑𝑐 itself is a partial function this

is just as with earlier usage, but when 𝑑𝑐 = ? or 𝑑𝑐 = inj(𝑑 ′𝑐) we use the definition at the bottom of

the figure.

Thought the generating axioms are different from the simple presentation in the body of the

paper, we show that provability is not affected:

Lemma A.1 (Correctness of Term Assignment). Assuming Σ ⊢ 𝐴 and Σ ⊢ 𝐵, the following are
equivalent

• 𝐴 ⊑ 𝐴′
is provable in the system in Figure 5

• There exists a derivation Σ ⊢ 𝑐 : 𝐴 ⊑ 𝐴′
in the system in Figure 14.

Similarly, assuming Σ ⊢ 𝜎 and Σ ⊢ 𝜎 ′
, the following are equivalent

• 𝜎 ⊑ 𝜎 ′
is provable in the system in Figure 5

• There exists a derivation Σ ⊢ 𝑐𝑒 : 𝜎 ⊑ 𝜎 ′
in the system in Figure 14.

Next we define gradual join and meet of value and effect types in Figure 15. Note that the

definition is quite simple for concrete effect sets because this is only used on effects within the

same module, so we never have to consider the case where the two sides assign different effects to

the same operation name 𝜀.

Now we define a notion of subtyping of precision derivations, which will be needed in the proofs

involving the interaction between subtyping and casts.

B (IN)EQUATIONAL THEORY
In this section we describe the full inequational theory and then prove several derivable theorems

in the theory.

Note that for brevity, we use some shorthands: rather than writing out the full Σ | Γ⊑ ⊢𝜎⊑𝜏 𝑀 ⊑
𝑁 : 𝐴 ⊑ 𝐵, (1) we elide Σ | Γ⊑ , and all rules should be interpreted as holding under an arbitrary

such contexts (2) rather than write 𝜎 ⊑ 𝜏 and 𝐴 ⊑ 𝐵, we use instead precision derivations 𝑑𝜎 , 𝑐 and

(3) whenever it is clear, we elide the types as well, especially for equational rules.

23

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

bool
∼
∨ bool = bool

(𝐴 →𝜎 𝐵)
∼
∨(𝐴′ →𝜎 ′ 𝐵′) = (𝐴

∼
∧𝐴′) →

𝜎
∼
∨𝜎 ′ (𝐵

∼
∨𝐵′)

?

∼
∨𝜎 = 𝜎

𝜎
∼
∨ ? = 𝜎

𝜎𝑐
∼
∨𝜏𝑐 = 𝜎𝑐 ∪ 𝜏𝑐

bool
∼
∨ bool = bool

(𝐴 →𝜎 𝐵)
∼
∧(𝐴′ →𝜎 ′ 𝐵′) = (𝐴

∼
∨𝐴′) →

𝜎
∼
∧𝜎 ′ (𝐵

∼
∧𝐵′)

?

∼
∧𝜎 = ?

𝜎
∼
∧ ? = ?

𝜎𝑐
∼
∧𝜏𝑐 = 𝜎𝑐 ∩ 𝜏𝑐

Fig. 15. Gradual Join and Meet

bool ≤: bool
𝑑𝑖 ≤: 𝑐𝑖 𝑐𝑒 ≤: 𝑑𝑒 𝑐𝑜 ≤: 𝑑𝑜

𝑐𝑖 →𝑐𝑒 𝑐𝑜 ≤: 𝑑𝑖 →𝑑𝑒 𝑑𝑜
? ≤: ?

𝑐 ≤: 𝑑
inj(𝑐) ≤: inj(𝑑)

dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 .𝜀 : 𝑐

′ { 𝑑 ′ ∈ 𝑑 ′𝑐 ∧ 𝑐 ≤: 𝑐′ ∧ 𝑑 ′ ≤: 𝑑
𝑑𝑐 ≤: 𝑑 ′𝑐

𝑐 ≤: inj(Σ)
𝑐 ≤: ?

𝑐 ≤: 𝑑
𝑐 ≤: inj(𝑑)

Fig. 16. Subtyping of Precision Derivations

First we need general call-by-value reasoning principles.

𝑀 [𝑥 : 𝐴] ≡ 𝑁 [𝑥 : 𝐴] 𝑉 ≡ 𝑉 ′
: 𝐴

𝑀 [𝑉 /𝑥] ≡ 𝑁 [𝑉 ′/𝑥]
ValSubst

let 𝑥 = 𝑦 in 𝑁 ≡ 𝑁 [𝑦/𝑥] MonadUnitL

let 𝑥 = 𝑀 in 𝑥 ≡ 𝑀 MonardUnitR

let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃 MonadAssoc

𝑀 [𝑥 : bool] ≡ if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]} BoolEta

if true{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑡 BoolBetaTru if false{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑓 BoolBetaFalse

if 𝑀{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 } IfEval (𝜆𝑥.𝑀)𝑉 ≡ 𝑀 [𝑉 /𝑥] FunBeta

(𝑉 : 𝐴 → 𝐵) ≡ 𝜆𝑥.𝑉𝑥 FunEta 𝑀 𝑁 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦 AppEval

24

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Next, the rules specifically for raise and handlers:

handle 𝑥 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑥/𝑦] HandleBetaRet

handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙} ≡
𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘] HandleBetaRaise

raise 𝜀 (𝑀) ≡ let 𝑥 = 𝑀 in raise 𝜀 (𝑥) RaiseEval

handle 𝑀 {ret 𝑥 .𝑁 | ∅} ≡ let 𝑥 = 𝑀 in 𝑁 HandleEmpty

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀) ∀𝜀 ∈ dom(𝜓).𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 }

HandleExt

Next, the congruence rules

𝑥1 ⊑ 𝑥2 : 𝑐 ∈ Γ⊑

Σ | Γ⊑ ⊢𝑑𝜎 𝑥1 ⊑ 𝑥2 : 𝑐
VarCong

⊢𝑑𝜎 true ⊑ true : bool
TrueCong

⊢𝑑𝜎 false ⊑ false : bool
FalseCong

𝑥1 ⊑ 𝑥2 : 𝑐 ⊢𝑑𝜎 ′ 𝑀1 ⊑ 𝑀2 : 𝑑

⊢𝑑𝜎 𝜆𝑥1.𝑀1 ⊑ 𝜆𝑥2.𝑀2 : 𝑐 →𝑑𝜎 ′ 𝑑
LambdaCong

⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐 →𝑑𝜎 𝑑 ⊢𝑑𝜎 𝑁1 ⊑ 𝑁2 : 𝑐

⊢𝑑𝜎 𝑀1 𝑁1 ⊑ 𝑀2 𝑁2 : 𝑑
AppCong

⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐

𝑥1 ⊑ 𝑥2 : 𝑐 ⊢𝑑𝜎 𝑁1 ⊑ 𝑁2 : 𝑑

⊢𝑑𝜎 let 𝑥1 = 𝑀1 in 𝑁1 ⊑ let 𝑥2 = 𝑀2 in 𝑁2 : 𝑑
LetCong

⊢𝑑𝜎 𝑀 ⊑ 𝑀 ′
: bool

⊢𝑑𝜎 𝑁𝑡 ⊑ 𝑁 ′
𝑡 : 𝑐 ⊢𝑑𝜎 𝑁𝑓 ⊑ 𝑁 ′

𝑓
: 𝑐

⊢𝑑𝜎 if 𝑀{𝑁𝑡 }{𝑁𝑓 } ⊑ if 𝑀 ′{𝑁 ′
𝑡 }{𝑁 ′

𝑓
} : 𝑐

IfCong

𝑐 : 𝐴1 ⊑ 𝐴2 𝑑 : 𝐵1 ⊑ 𝐵2

𝜀@𝑐 { 𝑑 ∈ 𝑑𝜎 ⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐

⊢𝑑𝜎 raise 𝜀 (𝑀1) ⊑ raise 𝜀 (𝑀2) : 𝑑
RaiseCong

⊢𝑑𝜎 𝑀 ⊑ 𝑀 ′
: 𝑐 𝑦 : 𝑐 ⊢𝑑𝜏 𝑁 ⊑ 𝑁 ′

: 𝑑

∀𝜀@𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 .(𝜀 ∉ dom(𝜙) ∧ 𝜀 ∉ dom(𝜙 ′) ∧ 𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜏)∨
𝑥 : 𝑑𝑖 , 𝑘 : 𝑑𝑜 →𝑑𝜏 𝑑 ⊢𝑑𝜏 𝜙 (𝜀) ⊑ 𝜙 ′ (𝜀) : 𝑑

⊢𝑑𝜏 handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ⊑ handle 𝑀 ′ {ret 𝑦.𝑁 ′ | 𝜙 ′} : 𝑑
HandleCong

Next, the rules for errors

⊢𝑑𝜎𝑟 𝑀 : 𝑐𝑟

⊢𝑑𝜎 ℧ ⊑ 𝑀 : 𝑐
ErrBot

𝐸 [℧] ≡ ℧ ErrStrict

25

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

The generic rules for casts

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : (𝑐 : 𝐴 ⊑ 𝐵) 𝑐 : 𝐴 ⊑ 𝐴

⊢𝑑𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝐵
ValUpL

⊢𝜎 𝑀 : 𝐴 𝑐 : 𝐴 ⊑ 𝐵

⊢𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝑐
ValUpR

⟨𝐵 ↢ 𝐴⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥 ValUpEval

𝑐 : 𝐴 ⊑ 𝐵 ⊢𝜎 𝑁 : 𝐵

⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑁 ⊑ 𝑁 : 𝑐
ValDnL

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : (𝑐 : 𝐴 ⊑ 𝐵)
⊢𝑑𝜎 𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴

ValDnR

⟨𝐴 ↞ 𝐵⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐴 ↞ 𝐵⟩𝑥 ValDnEval

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 𝑑𝜎 : 𝜎 ⊑ 𝜏

⊢𝜏 ⟨𝜏 ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝑐
ValUpL

⊢𝜎 𝑀 : 𝐴 𝑑𝜎 : 𝜎 ⊑ 𝜏

⊢𝑑𝜎 𝑀 ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀 : 𝑐
ValUpR

𝑑𝜎 : 𝜎 ⊑ 𝜏 ⊢𝜏 𝑁 : 𝐴

⊢𝑑𝜎 ⟨𝜎 ↞ 𝜏⟩𝑁 ⊑ 𝑁 : 𝐴
EffDnL

𝑑𝜎 : 𝜎 ⊑ 𝜏 ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

⊢𝜎 𝑀 ⊑ ⟨𝜎 ↞ 𝜏⟩𝑁 : 𝑐
EffDnR

And the subtyping rules

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 𝑑𝜎 : 𝜎 ⊑ 𝜏 𝑐 : 𝐴 ⊑ 𝐵

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜏 ′ 𝑐′ : 𝐴′ ⊑ 𝐵′

𝜎 ≤: 𝜎 ′ 𝐴 ≤: 𝐴′ 𝜏 ≤: 𝜏 ′ 𝐵 ≤: 𝐵′

⊢𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐′

SubtyMon

𝑐 : 𝐴 ⊑ 𝐵 𝑐′ : 𝐴′ ⊑ 𝐵′ 𝑐 ≤: 𝑐′ ⊢𝜎 𝑀 : 𝐴

⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ≡ ⟨𝐵′ ↢ 𝐴′⟩𝑀 : 𝐵′ ValUpSub

𝑐 : 𝐴 ⊑ 𝐵 𝑐′ : 𝐴′ ⊑ 𝐵′ 𝑐 ≤: 𝑐′ ⊢𝜎 𝑁 : 𝐵

⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑁 ≡ ⟨𝐴′
↞ 𝐵′⟩𝑁 : 𝜎 !𝐴′ ValDnSub

𝑐𝜎 : 𝜎 ⊑ 𝜏 𝑐′ : 𝜎 ′ ⊑ 𝜏 ′ 𝑐𝜎 ≤: 𝑐′𝜎 ⊢𝜎 𝑀 : 𝐴

⊢𝜏 ′ ⟨𝜏 ↢ 𝜎⟩𝑀 ≡ ⟨𝜏 ′ ↢ 𝜎 ′⟩𝑀 : 𝐴
EffUpSub

𝑐𝜎 : 𝜎 ⊑ 𝜏 𝑐′ : 𝜎 ′ ⊑ 𝜏 ′ 𝑐𝜎 ≤: 𝑐′𝜎 ⊢𝜏 𝑁 : 𝐴

⊢𝜎 ′ ⟨𝜎 ↞ 𝜏⟩𝑁 ≡ ⟨𝜎 ′
↞ 𝜏 ′⟩𝑁 : 𝐴

EffDnSub

In Figure 17, we list some derivable reasoning principles for our inequational theory, which can

be used to derive the operational semantics.

We can show the following properties of the interaction between subtyping and casts axiomati-

cally:

Lemma B.1. The following hold:

(1) Σ | Γ⊑ ⊨𝑑𝜎 ⟨𝐵′ ↢ 𝐴′⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵′
.

(2) Σ | Γ⊑ ⊨𝑑𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ ⟨𝐴′
↞ 𝐵′⟩𝑁 : 𝐴′

.

(3) Σ | Γ⊑ ⊨𝜎 ′
2

⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐 .

(4) Σ | Γ⊑ ⊨𝜎 ′
1

⟨𝜎1 ↞ 𝜎2⟩𝑃 ⊑ ⟨𝜎 ′
1 ↞ 𝜎 ′

2
⟩𝑄 : 𝑐 .

Proof.

26

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

⟨𝐴 ↢ 𝐴⟩𝑀 ≡ 𝑀 ⟨𝜎 ↢ 𝜎⟩𝑀 ≡ 𝑀 ⟨𝐴 ↞ 𝐴⟩𝑀 ≡ 𝑀 ⟨𝜎 ↞ 𝜎⟩𝑀 ≡ 𝑀

⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀 ≡ ⟨𝐶 ↢ 𝐴⟩𝑀 ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↞ 𝐶⟩𝑀 ≡ ⟨𝐴 ↞ 𝐶⟩𝑀

⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ≡ ⟨𝜎 ′′ ↢ 𝜎⟩𝑀 ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′
↞ 𝜎 ′′⟩𝑀 ≡ ⟨𝜎 ↞ 𝜎 ′′⟩𝑀

⟨𝐵 ↢ 𝐴⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ≡ ⟨𝜎 ′ ↢ 𝜎⟩⟨𝐵 ↢ 𝐴⟩𝑀 ⟨𝐴 ↞ 𝐵⟩⟨𝜎 ↞ 𝜎 ′⟩𝑀 ≡ ⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴 ↞ 𝐵⟩𝑀

⟨𝐴′ →𝜎 ′ 𝐵′ ↢ 𝐴 →𝜎 𝐵⟩𝑉 ≡ 𝜆𝑥 ′ .⟨𝐵′ ↢ 𝐵⟩⟨𝜎 ′ ↢ 𝜎⟩(𝑉 (⟨𝐴 ↞ 𝐴′⟩𝑥 ′))

⟨𝐴 →𝜎 𝐵 ↞ 𝐴′ →𝜎 ′ 𝐵′⟩𝑉 ≡ 𝜆𝑥 .⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜎 ′⟩(𝑉 (⟨𝐴′ ↢ 𝐴⟩𝑥))

dom(𝜙) = dom(𝜎) ∀𝜀 ∈ 𝜎.𝜙 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
Σ | Γ ⊢ ⟨𝜏 ↢ 𝜎⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

dom(𝜙) = dom(𝜏) ∀𝜀 ∈ 𝜏 .(𝜀 ∈ 𝜎 =⇒ 𝜙 (𝜀) = 𝑘 (raise 𝜀 (𝑥))) ∧ (𝜀 ∉ 𝜎 =⇒ 𝜙 (𝜀) = ℧)
Σ | Γ ⊢ ⟨𝜎 ↞ 𝜏⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

Fig. 17. Proveable Uniqueness Theorems

We have

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝐴

⊢𝑑𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐴 ⊑ 𝐵
(ValUpR)

⊢𝑑𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐴′ ⊑ 𝐵′ (Subtyping)

⊢𝑑𝜎 ⟨𝐵′ ↢ 𝐴′⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵′ (ValUpL)

Dual to the above.

We have

⊢𝜎1 𝑃 ⊑ 𝑄 : 𝑐

⊢𝑑𝜎 𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐
(EffUpR)

⊢𝑑 ′
𝜎
𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐

(Subtyping)

⊢𝜎 ′
2

⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐

(EffUpL)

Dual to the above. □

C OPERATIONAL SEMANTICS
An evaluation context 𝐸#𝜖 is one in which none of the handler clauses in the spine of the context

handles 𝜖 .

C.1 Operational Semantics from First Principles
Now we show that every operational reduction is justified by our inequational theory.

Lemma C.1 (Effect Casts are Handlers). Let 𝜎 ⊑ 𝜏 where 𝜎 is a concrete effect set.

27

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

𝜀 ∈ dom(𝜙) 𝐸′
#𝜀

𝐸 [handle 𝐸′ [raise (𝜀@𝐴 { 𝐵) (𝑉)] {ret 𝑥 .𝑁 | 𝜙}]
↦→ 𝐸 [𝜙 (𝜀) [𝑉 /𝑥] [(𝜆𝑦.handle (𝐸′ [𝑦]) {ret 𝑥 .𝑁 | 𝜙})/𝑘]]

𝐸 [handle 𝑉 {ret 𝑥 .𝑁 | 𝜙}] ↦→ 𝐸 [𝑁 [𝑉 /𝑥]]
HandleVal

𝐸 [(𝜆𝑥 .𝑀)𝑉] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
Lam

𝐸 [let 𝑥 = 𝑉 in 𝑀] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
Let

𝐸 [℧] ↦→ ℧
Err

𝐸 [if true{𝑁𝑡 }{𝑁𝑓 }] ↦→ 𝐸 [𝑁𝑡]
IfTrue

𝐸 [if false{𝑁𝑡 }{𝑁𝑓 }] ↦→ 𝐸 [𝑁𝑓]
IfFalse

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝑉] ↦→ 𝐸 [𝑉]
EffUpDnCastVal

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝑉] ↦→ 𝐸 [𝑉]
EffDnCastVal

𝜖@𝐴′ { 𝐵′ ∈ 𝜎 ′ 𝐸′
#𝜖

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [raise (𝜖@𝐴 { 𝐵) (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜖 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [𝑥]]

EffUpCast

𝜖@𝐴 { 𝐵 ∈ 𝜎 𝐸′
#𝜖

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [raise (𝜖@𝐴′ { 𝐵′) (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜖 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [𝑥]]

GoodEffDnCast

𝜖@𝐴 { 𝐵 ∉ 𝜎 𝐸′
#𝜖

𝐸 [⟨𝜎 ↞ ?⟩𝐸′ [raise (𝜖@𝐴′ { 𝐵′) (𝑉)]] ↦→ 𝐸 [℧]
BadEffDnCast

𝐸 [↕ bool𝑀] ↦→ 𝐸 [𝑀] BoolUpDnCast

𝐸 [(⟨(𝐴′ →𝜎 ′ 𝐵′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉] ↦→ 𝐸 [⟨𝐵′ ↢ 𝐵⟩⟨𝜎 ′ ↢ 𝜎⟩(𝑉𝑓 ⟨𝐴 ↞ 𝐴′⟩𝑉)]
FunUpCast

𝐸 [(⟨(𝐴 →𝜎 𝐵) ↞ (𝐴′ →𝜎 ′ 𝐵′)⟩𝑉𝑓)𝑉] ↦→ 𝐸 [⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜎 ′⟩(𝑉𝑓 ⟨𝐴′ ↢ 𝐴⟩𝑉)]
FunDnCast

Fig. 18. Full Operational Semantics

Then the upcast ⟨𝜏 ↢ 𝜎⟩ is equivalent to a handler in that for any𝑀 : 𝜎 !𝐴:

⟨𝜏 ↢ 𝜎⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

where for each 𝜀 ∈ dom(𝜎)

𝑥, 𝑘 ⊢ 𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) = 𝑘 (⟨𝐵𝜎 ↞ 𝐵𝜏 ⟩raise 𝜀 (⟨𝐴𝜏
↢ 𝐴𝜎 ⟩))

where 𝜀@𝐴𝜎 { 𝐵𝜎 ∈ 𝜎 and 𝜀@𝐴𝜏 { 𝐵𝜏 ∈ 𝜏 .

28

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Δ ::= • : (𝜎 !𝐴)
Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 →𝜎 𝐵 Σ | Γ | · ⊢𝜎 𝑁 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑉 : 𝐴 →𝜎 𝐵 Σ | Γ | • : (𝜎𝑖 !𝐶) ⊢𝜎 𝐸 : 𝐴

Σ | Γ | • : (𝜎𝑖 !𝐶) ⊢𝜎 𝑉 𝐸 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : bool Σ | Γ ⊢𝜎 𝑁𝑡𝐵 Σ | Γ ⊢𝜎 𝑁𝑓 𝐵

Σ | Γ | Δ ⊢𝜎 if 𝐸{𝑁𝑡 }{𝑁𝑓 } : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 𝜖@𝐴 { 𝐵 ∈ 𝜎

Σ | Γ | Δ ⊢𝜎 raise (𝜖@𝐴 { 𝐵) (𝐸) : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜎𝑜 𝑁 : 𝐶

(∀𝑖 ∈ 𝐼 .𝜖𝑖@𝐴𝑖 { 𝐵𝑖 ∈ 𝜎 ∧ Σ | Γ, 𝑥𝑖 : 𝐴𝑖 , 𝑘𝑖 : 𝐵𝑖 →𝜎𝑜 𝐶 ⊢𝜎𝑜 𝑁𝑖 : 𝐶)
𝜎 − {𝜖𝑖@𝐴𝑖 { 𝐵𝑖 }𝑖∈𝐼 ≤: 𝜎𝑜

Σ | Γ | Δ ⊢𝜎𝑜 handle 𝐸 {ret 𝑥 .𝑁 | (𝜖𝑖@𝐴𝑖 { 𝐵𝑖) (𝑥𝑖 , 𝑘𝑖) ↦→ 𝑁𝑖 . . .𝑖∈𝐼 } : 𝐶

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ | Γ, 𝑥 : 𝐴 ⊢𝜎 𝑁 : 𝐵

Σ | Γ | Δ ⊢𝜎 let 𝑥 = 𝐸 in 𝑁 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴′ Σ | Γ ⊢ 𝐴′ ≤: 𝐴
Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ | Δ ⊢Δ 𝜎 ′
: 𝐸𝐴 Σ | Γ ⊢ 𝜎 ′ ≤: 𝜎

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ | Δ ⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝐸 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐵 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ | Δ ⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ | Δ ⊢𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 ′ 𝐸 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ | Δ ⊢𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝐸 : 𝐴

Fig. 19. Typing Rules for Evaluation Contexts

𝜖#•
𝜖#𝐸

𝜖#(⟨𝐵 ↢ 𝐴⟩𝐸)
𝜖#𝐸

𝜖#(⟨𝐴 ↞ 𝐵⟩𝐸)
𝜖#𝐸 𝜖 ∉ 𝜎 𝜖 ∉ 𝜎 ′

𝜖#(⟨𝜎 ′ ↢ 𝜎⟩𝐸)
𝜖#𝐸 𝜖 ∉ 𝜎 ′

𝜖#(⟨𝜎 ↞ 𝜎 ′⟩𝐸)

𝜖#𝐸 𝜖′ any effect

𝜖#(raise (𝜖′@𝐴 { 𝐵) (𝐸))
𝜖#𝐸 ∧ ∀𝑖 ∈ 𝐼 .𝜖𝑖 ≠ 𝜖

𝜖#(handle 𝐸 {ret 𝑥 .𝑁 | (𝜖𝑖@𝐴𝑖 { 𝐵𝑖) (𝑥𝑖 , 𝑘𝑖) ↦→ 𝑁𝑖 . . .𝑖∈𝐼 })

𝜖#𝐸

𝜖#(𝐸 𝑀)
𝜖#𝐸

𝜖#(𝑉 𝐸)
𝜖#𝐸

𝜖#(if 𝐸{𝑁𝑡 }{𝑁𝑓 })
𝜖#𝐸

𝜖#(let 𝑥 = 𝐸 in 𝑁)

Fig. 20. Apartness of Effect from an Evaluation Context

29

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Similarly, the downcast ⟨𝜎 ↞ 𝜏⟩ is equivalent to a handler in that for any 𝑁 : 𝜏 !𝐴:

⟨𝜎 ↞ 𝜏⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}

where for each 𝜀 ∈ dom(𝜏), if 𝜀 ∈ dom(𝜎), then
𝑥, 𝑘 ⊢ 𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) = 𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜎 ↞ 𝐴𝜏 ⟩))

and if 𝜀 ∉ dom(𝜎), then
𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) = ℧

Proof. First for the upcast case

• We want to show

⟨𝜏 ↢ 𝜎⟩𝑀 ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

By UpL, it is sufficient to show

𝑀 ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

But by the handler 𝜂 rule, this is equivalent to showing

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙𝜎 } ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

where dom(𝜙𝜎) = dom(𝜎) and 𝜙𝜎 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Then by congruence, we need to

show that for each 𝜀 ∈ dom(𝜎),
𝑘 (raise 𝜀 (𝑥)) ⊑ 𝑘 (⟨𝐵𝜎 ↞ 𝐵𝜏 ⟩raise 𝜀 (⟨𝐴𝜎

↢)⟩𝐴𝜏𝑥)
which follows from UpR/DnR and congruence rules

• We want to show

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀

By handler 𝜂 it is sufficient to show

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} ⊑ handle ⟨𝜏 ↢ 𝜎⟩𝑀 {ret 𝑥 .𝑥 | 𝜙𝜏 }

where dom(𝜙𝜏) = dom(𝜏) and 𝜙𝜏 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Then𝑀 ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀 by UpR and so

by congruence we need only to show for each 𝜀 ∈ 𝜎 that

𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) ⊑ 𝜙𝜏 (𝜀)

which follows by a similar argument to the previous case.

Next, the downcast cases.

• We want to show

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ ⟨𝜎 ↞ 𝜏⟩𝑁

By DnR, it is sufficient to show

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ 𝑁

By handler 𝜂 this is equivalent to showign

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙𝜏 }

That is, for any 𝜀 ∈ dom(𝜏) that
𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) ⊑ 𝜙𝜏 (𝜀)

There are two cases

30

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(1) If 𝜀 ∈ dom(𝜎), then we need to show

𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜏
↢ 𝐴𝜎 ⟩𝑥)) ⊑ 𝑘 (raise 𝜀 (𝑥))

which follows by congruence and DnL/UpL rules.

(2) If 𝜀 ∉ dom(𝜎), then we need to show

℧ ⊑ 𝑘 (raise 𝜀 (𝑥))
which is immediate.

• We want to show

⟨𝜎 ↞ 𝜏⟩𝑁 ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}
By handler 𝜂 this is equivalent to showing

handle (⟨𝜎 ↞ 𝜏⟩𝑁) {ret 𝑥 .𝑥 | 𝜙𝜎 } ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}

By congruence and DnL this reduces to showing for each 𝜀 ∈ dom(𝜎) that
𝜙𝜎 (𝜀) ⊑ 𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀)

since 𝜀 ∈ dom(𝜎), these are each of the form:

𝑘 (raise 𝜀 (𝑥)) ⊑ 𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜏
↢ 𝐴𝜎 ⟩𝑥))

which follows by congruence and DnR/UpR rules.

□

Lemma C.2 (Derivation of Function Casts).

⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓 ≡ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))

And similarly,

⟨𝐴 →𝜎 𝐵 ↞ 𝐴′ →𝜏 𝐵
′⟩𝑓 ≡ 𝜆𝑥.⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜏⟩(𝑓 (⟨𝐴′ ↢ 𝐴⟩𝑥))

Proof. We show the upcast cases, the downcast cases are precisely dual.

(1) We want to show

⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓 ⊑ 𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))

By UpL, it is sufficient to show

𝑓 ⊑ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))
By 𝜂 equivalence for functions it is sufficient to show

𝜆𝑥.𝑓 𝑥 ⊑ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))
Which follows by congruence rules and UpR/DnR rules.

(2) We want to show

𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥)) ⊑ ⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓

By function 𝜂 it is sufficient to show

𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥)) ⊑ 𝜆𝑦.(⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓)𝑦

Which follows by congruence and UpL/DnL/UpR rules.

□

Lemma C.3. If 𝑥, 𝑘 ⊢ 𝜙 (𝜀) = 𝑘 (raise 𝜀 (𝑥)), then
handle raise 𝜀 (𝑥) {ret 𝑦.𝑁 | 𝜙} ≡ let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝑜 {ret 𝑦.𝑁 | 𝜙}

31

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Proof.

handle raise 𝜀 (𝑥) {ret 𝑦.𝑁 | 𝜙} ≡ handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑜 {ret 𝑦.𝑁 | 𝜙}
≡ (𝜆𝑜.handle 𝑜 {ret 𝑦.𝑁 | 𝜙})(raise 𝜀 (𝑥))
≡ let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝑜 {ret 𝑦.𝑁 | 𝜙}

□

This lemma is useful for the cast cases of the following, as it reduces to showing the cast is

equivalent to one whose 𝜀 case is just a re-raise.

Lemma C.4. If 𝐸#𝜀, then

𝐸 [raise 𝜀 (𝑥)] ≡ let 𝑦 = raise 𝜀 (𝑥) in 𝐸 [𝑦]

Proof. By induction on 𝜀#𝐸

• 𝜖#•
raise 𝜀 (𝑥) ≡ let 𝑦 = raise 𝜀 (𝑥) in 𝑦

•
𝜖#𝐸

𝜖#(⟨𝐵 ↢ 𝐴⟩𝐸)

⟨𝐵 ↢ 𝐴⟩𝐸 [raise 𝜀 (𝑥)] ≡ let [= 𝐸 in raise 𝜀 (𝑥)]𝑦⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑦 = (let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧]) in ⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑧 = (raise 𝜀 (𝑥)) in let 𝑦 = 𝐸 [𝑧] in ⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑧 = (raise 𝜀 (𝑥)) in ⟨𝐵 ↢ 𝐴⟩𝐸 [𝑧]

•
𝜖#𝐸

𝜖#(⟨𝐴 ↞ 𝐵⟩𝐸)
Similar to previous.

•
𝜀#𝐸

𝜀#(raise 𝜀′ (𝐸))

raise 𝜀′ (𝐸 [raise 𝜀′ (𝑥)]) ≡ raise 𝜀′ ((let 𝑧 = raise 𝜀′ (𝑥) in 𝐸 [𝑧]))
≡ let 𝑧 = raise 𝜀′ (𝑥) in 𝐸 [𝑧]raise 𝜀′ (())

•
𝜀#𝐸 𝜀 ∉ dom(𝜙)

𝜖#(handle 𝐸 {ret 𝑦.𝑁 | 𝜙})
Define𝜓 to be the extension of 𝜙 with the case𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥)).

handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑁 | 𝜓 }
≡ handle (let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧]) {ret 𝑦.𝑁 | 𝜓 }
≡ (𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜓 })(raise 𝜀 (𝑥))
≡ (let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜓 })
≡ (let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙})

32

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

•
𝜖#𝐸

𝜖#(𝐸 𝑀)

(𝐸 [raise 𝜀 (𝑥)])𝑀 ≡ let 𝑓 = 𝐸 [raise 𝜀 (𝑥)] in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑓 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑓 = 𝐸 [𝑧] in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in (𝐸 [𝑧])𝑀

•
𝜖#𝐸

𝜖#(𝑉 𝐸)

(𝑉 𝐸 [raise 𝜀 (𝑥)]) ≡ let 𝑓 = 𝑉 in let 𝑦 = 𝐸 [raise 𝜀 (𝑥)] in 𝑓 𝑦

≡ let 𝑓 = 𝑉 in let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in 𝑓 𝑦

≡ let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in 𝑉 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑦 = (𝐸 [𝑧]) in 𝑉 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in 𝑉 (𝐸 [𝑧])

•
𝜖#𝐸

𝜖#(if 𝐸{𝑁𝑡 }{𝑁𝑓 })

if 𝐸 [raise 𝜀 (𝑥)]{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑦 = (𝐸 [raise 𝜀 (𝑥)]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑦 = (𝐸 [𝑧]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑧 = raise 𝜀 (𝑥) in if 𝐸 [𝑧]{𝑁𝑡 }{𝑁𝑓 }

•
𝜖#𝐸

𝜖#(let 𝑥 = 𝐸 in 𝑁)

let 𝑦 = 𝐸 [raise 𝜀 (𝑥)] in 𝑁 ≡ let 𝑦 = let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧] in 𝑁

≡ let 𝑧 = (raise 𝜀 (𝑥)) in let 𝑦 = 𝐸 [𝑧] in 𝑁

□

Theorem C.5 (Soundness of Operational Semantics). If𝑀 ↦→∗ 𝑀 ′
then𝑀 ≡ 𝑀 ′

is derivable

in the inequational theory.

Proof. (1) The value handle, boolean/function 𝛽 reductions and error reduction are immediate

by axioms.

(2)

𝐸#𝜀

handle 𝐸 [raise 𝜀 (𝑉)] {ret 𝑦.𝑁 | 𝜙} ≡ 𝜙 (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙}/𝑘]

33

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

handle 𝐸 [raise 𝜀 (𝑉)] {ret 𝑦.𝑁 | 𝜙} ≡ handle (let 𝑧 = raise 𝜀 (𝑉) in 𝐸 [𝑧]) {ret 𝑦.𝑁 | 𝜙}
(LemmaC.4)

≡ 𝜙 (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙}/𝑘]
(3)

⟨𝜏 ↢ 𝜎⟩𝑉 ≡ 𝑉

By the following:

⟨𝜏 ↢ 𝜎⟩𝑉 ≡ handle 𝑉 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} (Lemma C.1)

≡ 𝑉 (Handle 𝛽)

(4)

⟨𝜎 ↞ 𝜏⟩𝑉 ≡ 𝑉

is similar to the previous.

(5)

𝜀@𝐴 { 𝐵 ∈ 𝜎 𝜀@𝐴′ { 𝐵′ ∈ 𝜏 𝐸#𝜖

⟨𝜏 ↢ 𝜎⟩𝐸 [raise 𝜀 (𝑉)] ≡ let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜖 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜏 ↢ 𝜎⟩𝐸 [𝑥]

⟨𝜏 ↢ 𝜎⟩𝐸 [raise 𝜀 (𝑉)] ≡ handle (𝐸 [raise 𝜀 (𝑉)]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} (LemmaC.1)

≡ handle (let 𝑧 = raise 𝜀 (𝑉) in 𝐸 [𝑧]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}
(LemmaC.4)

≡ 𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}]
= (𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩})(⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉))
≡ (𝜆𝑜.⟨𝜏 ↢ 𝜎⟩𝐸 [𝑜]) (⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉))
≡ let 𝑜 = (⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉)) in ⟨𝜏 ↢ 𝜎⟩𝐸 [𝑜]

(6)

𝜀@𝐴 { 𝐵 ∈ 𝜎 𝜀@𝐴′ { 𝐵′ ∈ 𝜏 𝐸#𝜖

⟨𝜎 ↞ 𝜏⟩𝐸 [raise 𝜀 (𝑉)] ≡ let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜖 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜏⟩𝐸 [𝑥]
Similar to previous

(7)

𝜀 ∉ 𝜎 𝐸#𝜖

⟨𝜎 ↞ ?⟩𝐸 [raise 𝜖 (𝑉)] ≡ ℧

⟨𝜎 ↞ ?⟩𝐸 [raise 𝜖 (𝑉)] ≡ handle (𝐸 [raise 𝜖 (𝑉)]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞?⟩} (LemmaC.1)

≡ handle (let 𝑧 = (raise 𝜖 (𝑉)) in 𝐸 [𝑧]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞?⟩}
(LemmaC.4)

≡ ℧
(8)

⟨bool↢ bool⟩𝑉 ≡ 𝑉

By the identity rule.

34

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(9)

⟨bool ↞ bool⟩𝑉 ≡ 𝑉

By the identity rule.

(10)

(⟨(𝐴′ →𝜏 𝐵
′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉 ≡ ⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 ⟨𝐴 ↞ 𝐴′⟩𝑉)

By the following:

(⟨(𝐴′ →𝜏 𝐵
′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉 ≡ ((𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 (⟨𝐴 ↞ 𝐴′)⟩𝑥)))𝑉

(LemmaC.2)

≡ ⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 (⟨𝐴 ↞ 𝐴′)⟩𝑉) (𝛽 →)

(11) Similar to previous.

□

Theorem C.6 (Adeqacy). If · ⊢∅ 𝑀 ≡ 𝑀 ′
: bool is derivable in the equational theory than for

any 𝑅 ∈ {true, false,℧}
𝑀 ↦→∗ 𝑅 ⇐⇒ 𝑀 ′ ↦→∗ 𝑅

Corollary C.7 (Consistency). true ≡ false is not derivable.

Theorem C.8 (Graduality). If · ⊢∅ 𝑀 ⊑ 𝑀 ′
: bool Then for any 𝑅 ∈ {true, false},

𝑀 ↦→∗ 𝑅 ⇒ 𝑀 ′ ↦→∗ 𝑅

and for any 𝑅′ ∈ {true, false,℧},
𝑀 ′ ↦→∗ 𝑅′ =⇒ 𝑀 ↦→∗ 𝑅′

D ELABORATION
Lemma D.1. If 𝐴 ≲ 𝐵 then there exist types 𝐴ℎ, 𝐷ℎ, 𝐷𝑙 , 𝐵𝑙 with

(1) 𝑐𝑙 : 𝐴 ⊑ 𝐷𝑙 and 𝑐ℎ : 𝐴ℎ ⊑ 𝐷ℎ satisfying 𝑐𝑙 ≤: 𝑐ℎ
(2) 𝑑𝑙 : 𝐵𝑙 ⊑ 𝐷𝑙 and 𝑑ℎ : 𝐵 ⊑ 𝐷ℎ satisfying 𝑑𝑙 ≤: 𝑑ℎ
(3) 𝑒𝑙 : 𝐷𝑙 ⊑ 𝐷 and 𝑒ℎ : 𝐷ℎ ⊑ 𝐷 with 𝑒𝑙 ≤: 𝑒ℎ where 𝐷 = ⌈𝐴⌉ = ⌈𝐵⌉.
Proof. By induction on the proof of 𝐴 ≲ 𝐴′

. □

Then the four different choices of cast are all equivalent in the inequational theory:

Lemma D.2. Given 𝐴,𝐴ℎ, 𝐵, 𝐵𝑙 , 𝐷𝑙 , 𝐷ℎ, 𝐷, 𝑐𝑙 , 𝑐ℎ, 𝑑𝑙 , 𝑑ℎ, 𝑒𝑙 , 𝑒ℎ as in the output of the previous lemma,

for any Γ ⊢ 𝑀 : 𝜎 !𝐴, the following four terms are equivalent at type 𝐵.

(1) ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ
↢ 𝐴ℎ⟩𝑀

(2) ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

(3) ⟨𝐵𝑙 ↞ 𝐷𝑙 ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

(4) ⟨𝐵 ↞ 𝐷⟩⟨𝐷 ↢ 𝐴⟩𝑀
Proof. (1) To show (1) is equivalent to (2), it suffices to show

⟨𝐷ℎ
↢ 𝐴ℎ⟩𝑀 ≡ ⟨𝐷𝑙

↢ 𝐴⟩𝑀
which is an instance of the subtyping/cast rule since 𝑐𝑙 ⊑ 𝑐ℎ .

(2) Similarly to show (2) is equivalent to (3) follows from 𝑑𝑙 ≤: 𝑑ℎ
(3) Lastly we show (4) is equivalent to (2). By cast functoriality,

⟨𝐵 ↞ 𝐷⟩⟨𝐷 ↢ 𝐴⟩𝑀 ≡ ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ ↞ 𝐷⟩⟨𝐷 ↢ 𝐷𝑙 ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

And by retraction the middle cast ⟨𝐷ℎ ↞ 𝐷⟩⟨𝐷 ↢ 𝐷𝑙 ⟩ is the identity.
□

35

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

D.1 Graduality

VAtom 𝑐 := {(𝑉 𝑙 ,𝑉 𝑟) : val(𝑉 𝑙) ∧ val(𝑉 𝑟)∧
(Σ | · | · ⊢∅ 𝑉 𝑙

: 𝑐𝑙) ∧ (Σ | · | · ⊢∅ 𝑉 𝑟
: 𝑐𝑟)}

TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 := {(𝑀𝑙 , 𝑀𝑟) :
(Σ | · | · ⊢𝑑𝑙𝜎 𝑀𝑙

: 𝐴𝑙) ∧ (Σ | · | · ⊢𝑑𝑟𝜎 𝑀𝑟
: 𝐴𝑟)}

ECtxAtom 𝑐 (𝜎𝑙 !𝐴𝑙) (𝜎𝑟 !𝐴𝑟) := {(𝑥𝑙 .𝑀𝑙 , 𝑥𝑟 .𝑀𝑟) :
(Σ | 𝑥𝑙 : 𝑐𝑙 | · ⊢𝜎𝑙 𝑀𝑙

: 𝐴𝑙) ∧ (Σ | 𝑥𝑟 : 𝑐𝑟 | · ⊢𝜎𝑟 𝑀𝑟
: 𝐴𝑟)}

Fig. 21. Well typed atoms

Our main goal is to prove the soundness of the inequational theory with respect to the logical

relation. That is

Theorem D.3 (Graduality). If Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 then Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Proof. By induction on the term precision derivation.

(1) (ValSubst) Lemma D.31

(2) (MonadUnitL) Lemma D.32

(3) (MonadUnitR) Lemma D.33

(4) (MonadAssoc) Lemma D.34

(5) (BoolBeta) Lemmas D.36 and D.37

(6) (BoolEta) Lemma D.35

(7) (IfEval) Lemma D.38

(8) (FunBeta) Lemma D.39

(9) (FunEta) Lemma D.40

(10) (AppEval) Lemma D.41

(11) (HandleBetaRet) Lemma D.42

(12) (HandleBetaRaise) Lemma D.43

(13) (HandleEmpty) Lemma D.45

(14) (HandleExt) Lemma D.46

(15) (RaiseEval) Lemma D.44

(16) (Variable) Lemma D.23

(17) (Let) Lemma D.27

(18) (Boolean) Lemma D.22

(19) (If) Lemma D.26

(20) (Lambda) Lemma D.24

(21) (App) Lemma D.25

(22) (Raise) Lemma D.28

(23) (HandleCong) Lemma D.29

(24) (Transitivity) Lemma D.69

(25) (ErrBot) Lemma D.47

(26) (ErrStrict) Lemma D.48

(27) (SubtyMon) Lemma D.49

(28) (ValUpSub) Lemma D.61

(29) (ValDnSub) Lemma D.61

36

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(30) (EffUpSub) Lemma D.61

(31) (EffDnSub) Lemma D.61

(32) (ValUpL) Follows from Lemma D.51.

(33) (ValUpR) Follows from Lemma D.50.

(34) (ValUpEval) Lemma D.58

(35) (ValDnR) Follows from Lemma D.53.

(36) (ValDnL) Follows from Lemma D.52.

(37) (ValDnEval) Lemma D.59

(38) (ValRetract) Lemma D.60.

(39) (EffUpL) Follows from Lemma D.55

(40) (EffUpR) Follows from Lemma D.54

(41) (EffDnR) Follows from Lemma D.57

(42) (EffDnL) Follows from Lemma D.56

(43) (EffRetract) Lemma D.60.

□

We begin with a few lemmas that will be useful in our proofs.

D.1.1 Lemmas.

Lemma D.4. If (𝑉1,𝑉2) ∈ 𝑅, and𝑉1 and𝑉2 are values of type 𝐴
𝑙
and 𝐴𝑟

respectively, then (𝑉1,𝑉2) ∈
R∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. We will establish the first disjunct in the definition of R∼⟦·⟧. This follows by assumption.

□

Lemma D.5. If (𝑉1,𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), then (𝑉1,𝑉2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Let ∼ ∈ {<, >}, and suppose (𝑉1,𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). Notice that regardless of

whether ∼ is < or >, we will be able to show the last clause in the definition of E⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟)

or E⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). In particular, we can take 𝑘 = 𝑗 , 𝑉1 = 𝑉1, and 𝑉2 = 𝑉2, noting that 𝑉1 steps to

itself in 0 steps, as does𝑉2. Thus, it remains to show that𝑉1 and𝑉2 are related by R⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟)

or R⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). This is true by assumption. □

Lemma D.6. If (𝑉1,𝑉2) ∈ V∼
𝑗 ⟦𝑐⟧, then (𝑉1,𝑉2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Proof. By Lemma D.5 (with 𝑅 = V∼⟦𝑐⟧), it suffices to show that (𝜎1𝑉1, 𝜎1𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

This is true by Lemma D.4, again with 𝑅 = V∼⟦𝑐⟧. □

Lemma D.7 (anti-reduction, one-sided). Suppose𝑀1 ↦→𝑖1 𝑀 ′
1
and𝑀2 ↦→𝑖2 𝑀 ′

2
.

If (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟), then (𝑀1, 𝑀2) ∈ E⪰

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Similarly, if (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪯

𝑗−𝑖1⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟), then (𝑀1, 𝑀2) ∈ E⪯

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. We prove the first statement; the second is analogous (and in fact easier). The assumption

that (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟) has four cases:

(1) 𝑀 ′
2
↦→𝑗−𝑖2+1

. In this case, 𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2+1

, i.e, 𝑀2 ↦→𝑗+1
. Thus, we may assert the first

disjunct in the definition of E⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

(2) There exists 𝑘 ≤ 𝑗 − 𝑖2 such that 𝑀 ′
1
↦→𝑗−𝑖2−𝑘 ℧, and furthermore 𝑀 ′

1
↦→∗ ℧. In this case,

we have that 𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2−𝑘 ℧, so 𝑀2 ↦→𝑗−𝑘 ℧. Also, 𝑀1 ↦→𝑖1 𝑀 ′

1
↦→∗ ℧, so 𝑀1 ↦→∗ ℧.

Thus, we may assert the second disjunct.

37

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(3) There exists 𝑘 ≤ 𝑗 − 𝑖2 and 𝑁2 such that𝑀 ′
2
↦→𝑗−𝑖2−𝑘 𝑁2 and𝑀

′
1
↦→∗ ℧. In this case we have

𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2−𝑘 𝑁2, so𝑀2 ↦→𝑗−𝑘 𝑁2. Thus, we may assert the third disjunct.

(4) Similar to previous case.

□

Lemma D.8 (anti-reduction). Suppose 𝑀1 ↦→𝑖1 𝑀 ′
1
and 𝑀2 ↦→𝑖2 𝑀 ′

2
, and that (𝑀 ′

1
, 𝑀 ′

2
) ∈

E∼
𝑗−𝑚⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), where𝑚 = min{𝑖1, 𝑖2}. Then (𝑀1, 𝑀2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Follows from one-sided anti-reduction (Lemma D.7) and downward closure. □

Lemma D.9 (forward reduction, one-sided). Suppose𝑀1 ↦→𝑖1 𝑀 ′
1
and𝑀2 ↦→𝑖2 𝑀 ′

2
.

If (𝑀1, 𝑀2) ∈ E⪰
𝑗+𝑖2⟦𝑑𝜎⟧(𝑅,𝐴

𝑙 , 𝐴𝑟), then (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Similarly, if (𝑀1, 𝑀2) ∈ E⪯
𝑗+𝑖1⟦𝑑𝜎⟧(𝑅,𝐴

𝑙 , 𝐴𝑟), then (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪯

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Follows from determinism of evaluation and a case analysis on the assumption that𝑀1

and𝑀2 are related. □

Lemma D.10 (forward reduction). Suppose𝑀1 ↦→𝑖1 𝑀 ′
1
and𝑀2 ↦→𝑖2 𝑀 ′

2
, and that (𝑀1, 𝑀2) ∈

E∼
𝑗+𝑚⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), where𝑚 = max{𝑖1, 𝑖2}. Then (𝑀 ′

1
, 𝑀 ′

2
) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Follows from one-sided forward reduction (Lemma D.9) and downward closure. □

Frequently in our proofs we will encounter a situation where we know that two evaluation

contexts are related in the K∼⟦·⟧ relation, that is, substituting related values gives related outputs.

On the other hand, as a cast applied to a value is not necessarily itself a value, we cannot reason

directly about what happens when such semantic values are substituted into related evaluation

contexts. We therefore introduce the following lemma.

Lemma D.11. Suppose 𝐸1 and 𝐸2 are evaluation contexts that take values to values. Let 𝑉1 and 𝑉2
be values (not necessarily related) such that

(𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧.

Furthermore, let (𝐸𝑙 [𝑥𝑙], 𝐸𝑟 [𝑥𝑟] ∈ K∼
𝑗 ⟦𝑐⟧E∼⟦𝑑𝜎⟧V∼⟦𝑑⟧).

Then

(𝐸𝑙 [𝐸1 [𝑉1]], 𝐸𝑟 [𝐸2 [𝑉2]]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

Proof. We show the proof for ∼=>.

By assumption, we have that there exist values𝑉 ′
1
and𝑉 ′

2
such that 𝐸1 [𝑉1] ↦→𝑖1 𝑉 ′

1
and 𝐸2 [𝑉2] ↦→𝑖2

𝑉 ′
2
, for some 𝑖1 and 𝑖2.

Thus, 𝐸𝑙 [𝐸1 [𝑉1]] ↦→𝑖1 𝐸𝑙 [𝑉 ′
1
] and likewise 𝐸𝑟 [𝐸2 [𝑉2]] ↦→𝑖2 𝐸𝑟 [𝑉 ′

2
].

By one-sided anti-reduction (Lemma D.7), it suffices to show that

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′

2
]) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧V
⪰⟦𝑑⟧.

By assumption on 𝐸𝑙 and 𝐸𝑟 being related, it suffices to show that (𝑉 ′
1
,𝑉 ′

2
) ∈ V⪰

𝑗−𝑖2⟦𝑐⟧.
Now by one-sided forward reduction (Lemma D.9), it suffices to show

(𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E⪰
(𝑗−𝑖2)+𝑖2⟦𝑑𝜎⟧V

∼⟦𝑐⟧.
But this is precisely our assumption, so we are finished.

□

38

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Remark: The reason why we needed to consider cases on ∼ separately is that the more

“generic”/two-sided anti-reduction and forward-reduction lemmas involve the min or max of the

number of steps taken by the two terms. These may not be equal, in which case the arithmetic

wouldn’t work out. But this doesn’t mean the above lemma is false. Conceptually, what is happening

is that in the two-sided variants of the lemmas, ∼ could be either > or <. On the other hand, the key

here is that ∼ stays the same throughout the application of anti-reduction and forward reduction,

so we are able to use the more specific, one-sided lemmas.

Lemma D.12 (time-out). If𝑀1 ↦→(𝑖+1)
, then (𝑀1, 𝑀2) ∈ E⪯

𝑖
⟦𝑑𝜎⟧𝑅. Similarly, if𝑀2 ↦→(𝑖+1)

, then

(𝑀1, 𝑀2) ∈ E⪰
𝑖
⟦𝑑𝜎⟧𝑅.

Proof. Suppose𝑀1 ↦→(𝑖+1)
. Then we may assert the first disjunct in the definition of E⪯

𝑖
⟦𝑑𝜎⟧𝑅

to conclude that (𝑀1, 𝑀2) ∈ E⪯
𝑖
⟦𝑑𝜎⟧𝑅. Likewise, if𝑀2 ↦→(𝑖+1)

, then we may assert the first disjunct

in the defintion of E⪰
𝑖
⟦𝑑𝜎⟧𝑅 to conclude that (𝑀1, 𝑀2) ∈ E⪰

𝑖
⟦𝑑𝜎⟧𝑅. □

We present two trivial lemmas about the later modality. We do this to cut down on tedious

reasoning about step indices within other proofs.

Lemma D.13. Let 𝑅 be a monotone step-indexed relation. If (𝑀1, 𝑀2) ∈ 𝑅 𝑗 , then (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 .

Proof. Suppose (𝑀1, 𝑀2) ∈ 𝑅 𝑗 . If 𝑗 = 0, then (𝑀1, 𝑀2) ∈ (▶𝑅)0 trivially.
Otherwise, let 𝑗 = 𝑗 ′ + 1. By monotonicity of 𝑅, we have (𝑀1, 𝑀2) ∈ 𝑅 𝑗 ′ , from which it follows

that (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 . □

Lemma D.14. Let 𝑅 be a monotone step-indexed relation, and let 𝑗 be of the form 𝑗 = 𝑗 ′ + 1. If

(𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 , then (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ′ .

Proof. Suppose (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 . Since 𝑗 = 𝑗 ′ + 1, by definition of ▶ we must have that

(𝑀1, 𝑀2) ∈ 𝑅 𝑗 ′ . By the previous lemma (Lemma D.13), we conclude (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ′ , which is

what we needed to show. □

Lemma D.15 (Reasoning with “later” when both sides step). Suppose𝑀 ↦→1 𝑀 ′
and 𝑁 ↦→1

𝑁 ′
, and that (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘𝑅. Then (𝑀, 𝑁) ∈ E∼

𝑘
⟦𝑑𝜎⟧𝑅.

Proof. First suppose 𝑘 = 0. Then by the time-out lemma (Lemma D.12), regardless of whether ∼
is < or >, we have (𝑀, 𝑁) ∈ E∼

0
⟦𝑑𝜎⟧𝑅.

Now suppose 𝑘 ≥ 1. Then by the definition of later, we have that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎⟧𝑅, so by

anti-reduction we have that (𝑀, 𝑁) ∈ E∼
𝑘
⟦𝑑𝜎⟧𝑅. □

Lemma D.16 (Löb-induction). Let 𝑃 (𝑛) be a predicate indexed by a natural number 𝑛. Suppose

for all natural numbers 𝑛, we have that (▶𝑚𝑃) (𝑛) implies 𝑃 (𝑛) for all𝑚 ≥ 1. Then 𝑃 (𝑛) is true for
all natural numbers 𝑛.

Proof. The proof is by induction on 𝑛. When 𝑛 = 0, the assumption says that (▶𝑃) (0) implies

𝑃 (0) (we have taken𝑚 = 1). So, it suffices to show that (▶𝑃) (0) holds. This is true by the definition

of later.

Now let𝑛 ≥ 1 be fixed, and suppose 𝑃 (𝑛) is true. We claim that 𝑃 (𝑛+1) is true. By our assumption,

it will suffice to show that (▶𝑃) (𝑛 + 1) is true. (We have again chosen𝑚 = 1.) By definition of later,

we must show 𝑃 (𝑛) is true. But 𝑃 (𝑛) is true by assumption. □

We now introduce a key lemma about evaluation contexts.

Note: In the below, we omit explicit mention of the types associated to the relations that

parameterize E∼⟦·⟧ and R∼⟦·⟧.

39

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Lemma D.17. If

(1) (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧𝑆 ′

(2) For all 𝑘 ≤ 𝑗 and (𝑁1, 𝑁2) ∈ R∼
𝑘
⟦𝑑 ′𝜎⟧𝑆 ′, we have (𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧𝑆 ,

then (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧𝑆 .

Proof. We prove the lemma for ∼=>; the other case is similar. Based on assumption (1), there

are four cases:

(1) Case𝑀2 ↦→𝑗+1
. We have 𝐸2 [𝑀2] ↦→𝑗+1

, so we may assert the first disjunct in the definition of

E∼
𝑗 ⟦𝑑𝜎⟧𝑆 to conclude that (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼

𝑗 ⟦𝑑𝜎⟧𝑆 .
(2) Case ∃𝑘 ≤ 𝑗 such that𝑀2 ↦→𝑗−𝑘 ℧ and𝑀1 ↦→∗ ℧. We have 𝐸2 [𝑀2] ↦→𝑗−𝑘+1 ℧. If 𝑘 = 0, then

we have 𝐸2 [𝑀2] ↦→𝑗+1
, so we may assert the first disjunct. Otherwise, if 𝑘 ≥ 1, then we may

take 𝑘 ′ = 𝑘 − 1 and observe that 𝐸2 [𝑀2] ↦→𝑗−𝑘 ′
℧.

(3) Case ∃𝑘 ≤ 𝑗 , ∃𝑉2 such that 𝑀2 ↦→𝑗−𝑘 𝑁2 and 𝑀1 ↦→∗ ℧. We have 𝐸2 [𝑀2] ↦→𝑗−𝑘 𝐸2 [𝑁2], so
we may assert the third disjunct with 𝑘 = 𝑘 and 𝑁2 = 𝐸2 [𝑁2].

(4) Case ∃𝑘 ≤ 𝑗, ∃(𝑁1, 𝑁2) ∈ R⪰
𝑘
⟦𝑑𝜎⟧𝑆 ′ such that 𝑀2 ↦→𝑗−𝑘 𝑁2 and 𝑀1 ↦→∗ 𝑁1. We have

𝐸1 [𝑀1] ↦→𝑖1 𝐸1 [𝑁1] for some 𝑖1, and 𝐸2 [𝑀2] ↦→𝑗−𝑘 𝐸2 [𝑁2]. By assumption (2), we have

(𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧𝑆 . Thus, we may assert the fourth disjunct with 𝑉1 = 𝐸1 [𝑁1] and

𝑉2 = 𝐸2 [𝑁2].
□

Lemma D.18 (“Semantic bind”). Let 𝑐 : 𝐴 ⊑ 𝐴′
and 𝑑 : 𝐵 ⊑ 𝐵′

. Let 𝐸1 and 𝐸2 be evaluation

contexts such that Σ | Γ | • : (𝑑 ′𝑙𝜎 !𝐴) ⊢𝑑𝑙𝜎 𝐸1 : 𝐵 and Σ | Γ | • : (𝑑 ′𝑟𝜎 !𝐴′) ⊢𝑑𝑟𝜎 𝐸2 : 𝐵
′
. Suppose

(1) (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′).

(2) For all 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ 𝑆 ′
𝑘
, we have (𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

(3) For all 𝑘 ≤ 𝑗 and for all 𝜖 : 𝑐𝜖 { 𝑑𝜖 ∈ 𝑑 ′𝜎 , if 𝐸1 catches 𝜖 or 𝐸2 catches 𝜖 , then for all 𝑉 𝑙 ,𝑉 𝑟 ∈
(▶V∼⟦𝑐𝜖⟧)𝑘 and all evaluation contexts 𝐸𝑙#𝜖 and 𝐸𝑟#𝜖 such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜖⟧)𝑘 (E∼⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′), (𝑑 ′𝑙𝜎 !𝐴), (𝑑 ′𝑟𝜎 !𝐴′)), we have
(𝐸1 [𝐸𝑙 [raise 𝜖@𝑐𝑙𝜖 { 𝑑𝑙𝜖 (𝑉 𝑙)]], 𝐸2 [𝐸𝑟 [raise 𝜖@𝑐𝑟𝜖 { 𝑑𝑟𝜖 (𝑉 𝑟)]]) ∈ E∼

𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

Then (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

Proof. We use Löb induction (Lemma D.16). We assume that if the premises of the lemma are

satisfied “later”, then the conclusion holds later. We show under this assumption that the lemma

holds “now".

We first apply Lemma D.17. The first hypothesis is immediate. Now let 𝑘 ≤ 𝑗 and let (𝑁1, 𝑁2) ∈
R∼
𝑘
⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′). We need to show that

(𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

There are two cases to consider. In the first case, 𝑁1 and 𝑁2 are values and (𝑁1, 𝑁2) ∈ V∼
𝑗 ⟦𝑐⟧.

Then by assumption (2) with 𝑘 = 𝑗 , we have (𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′), as needed.

In the second case, there exist 𝜖′ : 𝑐′ { 𝑑 ′ ∈ 𝑑 ′𝜎 , 𝐸
𝑙
#𝜖′, 𝐸𝑟#𝜖′, and 𝑉 𝑙 ,𝑉 𝑟

such that (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐′⟧) 𝑗 , and (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′), (𝑑 ′𝑙𝜎 !𝐴), (𝑑 ′𝑟𝜎 !𝐴′)), and𝑁1 = 𝐸𝑙 [raise 𝜖′ (𝑉 𝑙)] and𝑁2 = 𝐸𝑟 [raise 𝜖′ (𝑉 𝑟)].
Let 𝑁 ′

1
= 𝐸1 [𝑁1] = 𝐸1 [𝐸𝑙 [raise 𝜖′ (𝑉 𝑙)]] and 𝑁 ′

2
= 𝐸2 [𝑁2] = 𝐸2 [𝐸𝑟 [raise 𝜖′ (𝑉 𝑟)]].

We need to show that

(𝑁 ′
1
, 𝑁 ′

2
) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

40

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

We now consider whether one of 𝐸1 or 𝐸2 catches 𝜖
′
, or whether neither catches it. In the former

case, assumption (3) immediately implies the desired result.

Now suppose neither 𝐸1 nor 𝐸2 catches 𝜖 . In this case, note that since 𝜖′#𝐸𝑙 and 𝜖′#𝐸1, we have
𝜖′#𝐸1 [𝐸𝑙]. Likewise, we have 𝜖′#𝐸2 [𝐸𝑟]. It follows that 𝑁 ′

1
and 𝑁 ′

2
are stuck terms, i.e., they do not

step. Thus, it suffices to show that

(𝑁 ′
1
, 𝑁 ′

2
) ∈ R∼

𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).
We first claim (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐′⟧) 𝑗 . Since (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐′⟧) 𝑗 , this follows by Lemma

D.14.

We now claim that

(𝑥𝑙 .(𝐸1 [𝐸𝑙 [𝑥𝑙]]), 𝑥𝑟 .(𝐸2 [𝐸𝑟 [𝑥𝑟]])) ∈ (▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′), (𝑑𝑙𝜎 !𝐵), (𝑑𝑟𝜎 !𝐵′)).
To this end, let 𝑘 ≤ 𝑗 and let (𝑉 ′𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑑 ′⟧)𝑘 . We need to show that

(𝐸1 [𝐸𝑙 [𝑉 ′𝑙]], 𝐸2 [𝐸𝑟 [𝑉 ′𝑟]]) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (𝑆, 𝐵, 𝐵′).
By the Löb induction hypothesis, it suffices to show that the three hypotheses of the lemma hold

later. We claim that (𝐸𝑙 [𝑉 ′𝑙], 𝐸𝑟 [𝑉 ′𝑟]) ∈ (E∼
𝑘
⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧). To see this, recall our assumption that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧) .
Thus, we have that (𝐸𝑙 [𝑉 ′𝑙], 𝐸𝑟 [𝑉 ′𝑟]) ∈ (▶E∼⟦𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), which is what we needed to

show.

□

We now introduce a few lemmas about precision derivations. We first show how we may

“compose” precision derivations:

Lemma D.19 (cut admissibility for precision derivations). • If 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑 : 𝐵 ⊑ 𝐶

then 𝑐 ◦ 𝑑 : 𝐴 ⊑ 𝐶 .

• If 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

then 𝑑𝜎 ◦ 𝑑 ′𝜎 : 𝜎 ⊑ 𝜎 ′′
.

Proof. We prove these statements simultaneously by induction on 𝑑 and 𝑑 ′𝜎 .

• Case 𝑑 = bool. We have 𝐵 = 𝐶 = bool, so 𝑐 = bool (the reflexivity derivation). Thus, we

may take 𝑐 ◦ 𝑑 = bool.
• Case 𝑑 = 𝑑𝑖 →𝑑𝜎 𝑑𝑜 . Inspecting the rules in figure 14, we see that 𝐵 = 𝐵𝑖 →𝐵𝜎

𝐵𝑜 and

𝐶 = 𝐶𝑖 →𝐶𝜎
𝐶𝑜 . Thus, we must have 𝐴 = 𝐴𝑖 →𝐴𝜎

𝐴𝑜 , which means that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 .

We may take 𝑐 ◦ 𝑑 = (𝑐𝑖 ◦ 𝑑𝑖) →𝑐𝜎◦𝑑𝜎 (𝑐𝑜 ◦ 𝑑𝑜). By our inductive hypotheses, we have (1)

𝑐𝑖 ◦𝑑𝑖 : 𝐴𝑖 ⊑ 𝐶𝑖 , (2) 𝑐𝜎 ◦𝑑𝜎 : 𝐴𝜎 ⊑ 𝐶𝜎 , and (3) 𝑐𝑜 ◦𝑑𝑜 : 𝐴𝑜 ⊑ 𝐶𝑜 . Now, using the type precision

formation rule for functions, we get that (𝑐𝑖 ◦ 𝑑𝑖) →𝑐𝜎◦𝑑𝜎 (𝑐𝑜 ◦ 𝑑𝑜) : (𝐴𝑖 →𝐴𝜎
𝐴𝑜 ⊑ 𝐶𝑖 →𝐶𝜎

𝐶𝑜).
• Case 𝑑 ′𝜎 = ?. Define ? ◦ ? = ?. Define Inj(𝑑) ◦ ? = Inj(𝑑). An concrete effect set cannot be

composed with ?.

• Case 𝑑 ′𝜎 = Inj(𝑑). Note that 𝜎 ′′ = ?. We define 𝑑𝜎 ◦ Inj(𝑑) = Inj(𝑑𝜎 ◦ 𝑑).
• Case 𝑑 ′𝜎 = 𝑑 ′𝑐 : Define (𝑑𝑐 ◦𝑑 ′𝑐) by 𝜀 : 𝑐 { 𝑑 ∈ (𝑑𝑐 ◦𝑑 ′𝑐) if and only if 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦𝑑2
with 𝜀 : 𝑐 {1 𝑑1 ∈ 𝑑𝑐 and 𝜀 : 𝑐 {2 𝑑2 ∈ 𝑑 ′𝑐 .

□

Lemma D.20 (reflexivity of composition). Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
. The following hold.

• 𝑐 ◦ 𝐵 = 𝐴 ◦ 𝑐 = 𝑐 .

41

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

• 𝑑𝜎 ◦ 𝜎 ′ = 𝜎 ◦ 𝑑𝜎 = 𝑑𝜎 .

Proof. Follows from the uniquenes of precision derivations. That is, 𝑐 ◦ 𝐵, 𝐴 ◦ 𝑐 , and 𝑐 all are all
proofs of 𝐴 ⊑ 𝐵, hence are equal. □

Lemma D.21 (decomposition). Suppose 𝜖@𝑐 { 𝑑 ∈ 𝑑𝜎 ◦𝑑 ′𝜎 . Then there exist 𝑐1, 𝑐2 and 𝑑1, 𝑑2 such
that 𝜖@𝑐1 { 𝑑1 ∈ 𝑑𝜎 and 𝜖@𝑐2 { 𝑑2 ∈ 𝑑 ′𝜎 and 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦ 𝑑2.

Proof. By induction on 𝑑 ′𝜎 .

• Case 𝑑 ′𝜎 = ?. If 𝑑𝜎 = ?, then our assumption becomes 𝜖@𝑐 { 𝑑 ∈ ? ◦ ? = ?. By definition of

membership in ?, this means that 𝜖@𝑐𝑟 { 𝑑𝑟 ∈ Σ.
We may take 𝑐1 = 𝑐 and take 𝑐2 to be the reflexivity derivation for 𝑐𝑟 ⊑ 𝑐𝑟 . Likewise, we

take 𝑑1 = 𝑑 and 𝑑2 to be the relfexivity derivation for 𝑑𝑟 ⊑ 𝑑𝑟 . Note that 𝜖@𝑐2 { 𝑑2 ∈ ?,

because 𝑐𝑟
2
= 𝑐𝑟 and 𝑑𝑟

2
= 𝑑𝑟 , and we know 𝜖@𝑐𝑟 { 𝑑𝑟 ∈ Σ. We also have that 𝑐 = 𝑐1 ◦ 𝑐2 and

𝑑 = 𝑑1 ◦ 𝑑2, using Lemma D.20.

If 𝑑𝜎 = inj(𝑑𝜎), then our assumption becomes 𝜖@𝑐 { 𝑑 ∈ inj(𝑑𝜎). By definition of

membership in Inj(,), we have that 𝜖@𝑐 { 𝑑 ∈ 𝑑𝜎 . We may again take 𝑐1 = 𝑐 and 𝑐2 to be

the reflexivity derivation for 𝑐𝑟 ⊑ 𝑐𝑟 , and likewise for 𝑑1 and 𝑑2. The same reasoning as above

applies.

• Case 𝑑 ′𝜎 = inj(𝑑𝜎). By definition of composition, our assumption becomes 𝜖@𝑐 { 𝑑 ∈
(𝑑𝜎 ◦ inj(𝑑𝜎)) = inj(𝑑𝜎 ◦ 𝑑𝜎).
By the induction hypothesis, there are 𝑐1, 𝑐2 and 𝑑1, 𝑑2 such that 𝜖@𝑐1 { 𝑑1 ∈ 𝑑𝜎 and

𝜖@𝑐2 { 𝑑2 ∈ 𝑑𝜎 and 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦ 𝑑2. By definition of membership in Inj(,), we
have 𝜖@𝑐2 { 𝑑2 ∈ inj(𝑑𝜎) = 𝑑 ′𝜎 .

• Case 𝑑 ′𝜎 = 𝑑 ′𝑐 (concrete effect set). Similar to previous case.

□

D.1.2 Congruence Rules. With these lemmas, we can prove the soundness of the term precision

congruence rules. The proofs are by induction on the term precision derivation.

Lemma D.22 (Congruence for Booleans).

Proof. We need to show that Γ⊑ ⊨𝑑𝜎 ⟦true⟧ ⊑ ⟦true⟧ ∈ bool, and likewise for false (we will
show this for true only; the reasoning for false is exactly the same.)

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

(true[𝛾1], true[𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧,

i.e.,

(true, true) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧.

By Lemma D.6, it suffices to show that (true, true) ∈ V∼
𝑖 ⟦bool⟧. This is true according to the

definition of the logical relation.

□

Lemma D.23 (Congruence for Variables).

Proof. We need to show that Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐, Γ
′⊑ ⊨𝑑𝜎 𝑥1 ⊑ 𝑥2 ∈ 𝑐 .

Let ∼ ∈ {<, >}, and let Γ̂⊑ = Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐, Γ
′⊑
. Let (𝛾1, 𝛾2) ∈ G∼

𝑖 ⟦Γ̂⊑⟧. We need to show

(𝑥1 [𝛾1], 𝑥2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

42

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

By Lemma D.6, it suffices to show that (𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼
𝑖 ⟦𝑐⟧. But this follows from the fact

that (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ̂⊑⟧. In particular, by the definition of the logical relation, since (𝑥1 ⊑ 𝑥2 : 𝑐) ∈

Γ̂⊑ , we have (𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼
𝑖 ⟦𝑐⟧. □

Lemma D.24 (Congruence for Lambdas).

Proof. Suppose Γ⊑, 𝑥 ⊑ 𝑦 : 𝑐 ⊨𝑑𝜎 ′ 𝑀 ⊑ 𝑁 ∈ 𝑑 . We need to show that Γ⊑ ⊨𝑑𝜎 𝜆𝑥.𝑀 ⊑ 𝜆𝑦.𝑁 ∈
𝑐 →𝑑𝜎 ′ 𝑑 .

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

((𝜆𝑥.𝑀) [𝛾1], (𝜆𝑦.𝑁) [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐 →𝑑𝜎 ′ 𝑑⟧.

Let 𝑉1 = 𝜆𝑥 .𝑀 [𝛾1] and 𝑉2 = 𝜆𝑦.𝑁 [𝛾2]. By Lemma D.6, it will suffice to show that (𝑉1,𝑉2) ∈
V∼

𝑖 ⟦𝑐 →𝑑𝜎 ′ 𝑑⟧. To this end, let 𝑘 ≤ 𝑖 and let (𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝑐⟧. We will show that (𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈

E∼
𝑘
⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.
Let𝑀 ′ = (𝑀 [𝛾1]) (𝑉𝑖1/𝑥) and let 𝑁 ′ = (𝑁 [𝛾2]) (𝑉𝑖2/𝑦). Note that (𝑉1𝑉𝑖1) ↦→1 𝑀 ′

, and similarly

(𝑉2𝑉𝑖2) ↦→1 𝑁 ′
. Thus, if 𝑘 = 0, then by the Time-out Lemma (Lemma D.12), we conclude that

(𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈ E∼
𝑘
⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.

Hence, from now on, we assume 𝑘 ≥ 1. By the Anti-reduction lemma (Lemma D.8) (with

𝑖1 = 𝑖2 = 1 and 𝑗 = 𝑘), it will suffice to show that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.

This will follow by our inductive hypothesis, which says that for any ∼ ∈ {<, >}, any natrual

number 𝑛, and any (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑛 ⟦Γ⊑, 𝑥 ⊑ 𝑦 : 𝑐⟧, we have

(𝑀 [𝛾 ′
1
], 𝑁 [𝛾 ′

2
]) ∈ E∼

𝑛 ⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.
Let 𝛾 ′

1
= 𝛾1,𝑉𝑖1/𝑥 , let 𝛾 ′2 = 𝛾2,𝑉𝑖2/𝑦. It is easily verified that (𝛾 ′1, 𝛾 ′2) ∈ G∼

𝑘−1⟦Γ
⊑, 𝑥 ⊑ 𝑦 : 𝑐⟧. (Doing

so requires the monotonicity lemma, combined with the fact that (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧ and that

𝑘 − 1 < 𝑘 ≤ 𝑖). Taking 𝑛 = 𝑘 − 1 above, and noting that 𝑀 ′ = 𝑀 [𝛾 ′
1
] and 𝑁 ′ = 𝑁 [𝛾 ′

2
], it follows

that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧, as we wanted to show.

□

Lemma D.25 (Congruence for Function Application).

Proof. Suppose Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐 →𝑑𝜎 𝑑 , and that Γ⊑ ⊨𝑑𝜎 𝑁1 ⊑ 𝑁2 ∈ 𝑐 .

We need to show that Γ⊑ ⊨𝑑𝜎 𝑀1 𝑁1 ⊑ 𝑀2 𝑁2 ∈ 𝑑 .

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

(𝑀1 𝑁1 [𝛾1], 𝑀2 𝑁2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

By Lemma D.18, it will suffice to show that

(1) (𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐 →𝑑𝜎 𝑑⟧, and that (2) for all 𝑘 ≤ 𝑖 and (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝑐 →𝑑𝜎

𝑑⟧, we have (𝑉1 𝑁1,𝑉1 𝑁2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

(1) follows immediately from our first top-level assumption.

To show (2), we again apply Lemma D.18. It follows from our second top-level assumption that

(𝑁1 [𝛾1], 𝑁2 [𝛾2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. Now let 𝑘 ′ ≤ 𝑘 and (𝑉 ′

1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝑐⟧. We claim that

(𝑉1𝑉 ′
1
,𝑉2𝑉

′
2
) ∈ E∼

𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑑⟧.
This holds since (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝑐 →𝑑𝜎 𝑑⟧ and (𝑉 ′

1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝑐⟧.
□

Lemma D.26 (Congruence for If).

Proof. Suppose:

43

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(1) Γ⊑ ⊨𝑑𝜎 ⟦𝑀⟧ ⊑ ⟦𝑀 ′⟧ ∈ bool
(2) Γ⊑ ⊨𝑑𝜎 ⟦𝑁𝑡⟧ ⊑ ⟦𝑁 ′

𝑡 ⟧ ∈ 𝑐

(3) Γ⊑ ⊨𝑑𝜎 ⟦𝑁𝑓 ⟧ ⊑ ⟦𝑁 ′
𝑓
⟧ ∈ 𝑐

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show(

if 𝑀{𝑁𝑡 }{𝑁𝑓 }[𝛾1], if 𝑀 ′{𝑁 ′
𝑡 }{𝑁 ′

𝑓
}[𝛾2]

)
∈ E∼

𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.
By Lemma D.18, it will suffice to show that (1) (⟦𝑀⟧[𝛾1], ⟦𝑀 ′⟧[𝛾2]) ∈ E∼

𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧, and
(2) for all 𝑘 ≤ 𝑖 and (𝑉1,𝑉2) ∈ V∼

𝑘
⟦bool⟧, we have

(if 𝑉1{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (if 𝑉2{𝑁 ′
𝑡 [𝛾2]}{𝑁 ′

𝑓
[𝛾2]}) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

We note that (1) follows by our first top-level assumption. For (2), the assumption (𝑉1,𝑉2) ∈
V∼

𝑘
⟦bool⟧ has two cases. If 𝑉1 = 𝑉2 = true, then by anti-reduction (Lemma D.8), it will suffice to

show (𝑁𝑡 [𝛾1], 𝑁 ′
𝑡 [𝛾2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. But this follows from our second top-level assumption.

Similarly, if 𝑉1 = 𝑉2 = false, then it suffices to show that (𝑁𝑓 [𝛾1], 𝑁 ′
𝑓
[𝛾2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧,

which follows from our third top-level assumption.

□

Lemma D.27 (Congruence for Let).

Proof. This proof is similar to the function abstraction proof and is hence omitted. □

Lemma D.28 (Congruence for Raise).

Proof. Let 𝑐 : 𝐴1 ⊑ 𝐴2 and 𝑑 : 𝐵1 ⊑ 𝐵2. Suppose 𝜀@𝑐 { 𝑑 ∈ 𝑑𝜎 and

Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐.

We need to show that

Γ⊑ ⊨𝑑𝜎 raise (𝜀@𝐴1 { 𝐵1) (𝑀1) ⊑ raise (𝜀@𝐴2 { 𝐵2) (𝑀2) ∈ 𝑑.

Let ∼ ∈ {<, >} and (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We will show

(raise (𝜀@𝐴1 { 𝐵1) (𝑀1) [𝛾1], raise (𝜀@𝐴2 { 𝐵2) (𝑀2) [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

We apply Lemma D.18. We first claim that (𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧. This follows by

assumption. Now, let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We claim that

(raise (𝜀@𝐴1 { 𝐵1) (𝑉1) [𝛾1], raise (𝜀@𝐴2 { 𝐵2) (𝑉2) [𝛾2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

By Lemma D.5, it suffices to show that

(raise (𝜀@𝐴1 { 𝐵1) (𝑉1) [𝛾1], raise (𝜀@𝐴2 { 𝐵2) (𝑉2) [𝛾2]) ∈ R∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

We assert the second disjunct in the definition of R∼⟦·⟧, where we take 𝜖 to be 𝜀 (which we

know by assumption is in 𝑑𝜎), and we take 𝐸𝑙 = 𝐸𝑟 = • and 𝑉 𝑙 = 𝑉1, 𝑉
𝑟 = 𝑉2.

We need to show that (𝑉1,𝑉2) ∈ (▶V∼⟦𝑐⟧)𝑘 , and that

(𝑥𝑙 .(•[𝑥𝑙]), 𝑥𝑟 .(•[𝑥𝑟])) ∈ (▶K∼⟦𝑑⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑑⟧)
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘 ′⟦𝑐⟧. We need to show

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑑⟧.

44

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

But this follows by Lemma D.6.

□

Lemma D.29 (Congruence for Handle).

𝑀 ⊑ 𝑀 ′
: 𝑑𝜎 ! 𝑐 𝑦 : 𝑐 ⊢ 𝑁 ⊑ 𝑁 ′

: 𝑑𝜏 !𝑑

∀𝜀@𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 .(𝜀 ∉ dom(𝜙) ∧ 𝜀 ∉ dom(𝜙 ′) ∧ 𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜏)∨
𝑥 : 𝑑𝑖 , 𝑘 : 𝑑𝑜 →𝑑𝜏 𝑑 ⊢ 𝜙 (𝜀) ⊑ 𝜙 ′ (𝜀) : 𝑑𝜏 !𝑑

handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ⊑ handle 𝑀 ′ {ret 𝑦.𝑁 ′ | 𝜙 ′} : 𝑑𝜏 !𝑑

Proof. We use Löb induction (Lemma D.16). Assume that for all 𝑘 ≤ 𝑗 and all (𝛾1, 𝛾2) ∈
(▶G∼⟦Γ⊑⟧)𝑘 and all (𝑀,𝑀 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}[𝛾1],
handle 𝑀 ′ {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′}[𝛾2])

∈ (▶E∼
𝑗 ⟦𝑑𝜏⟧𝑘 (V∼⟦𝑑⟧) .

Let (𝑀,𝑀 ′) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}[𝛾1],
handle 𝑀 ′ {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′}[𝛾2])

∈ E∼
𝑗 ⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By monadic bind (Lemma D.18), it suffices to consider the following cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show that

(handle 𝑉1 {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝑉2 {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})

∈ E∼
𝑗 ⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By anti-reduction (Lemma D.8), it suffices to show that

(𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 ′ [𝛾2] [𝑉2/𝑥 ′]) ∈ E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧.

This follows from the premise: if we let 𝛾 ′
1
= 𝛾1,𝑉1/𝑥 and 𝛾 ′

2
= 𝛾2,𝑉2/𝑥 ′, then it is eas-

ily checked that (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑗 ⟦Γ⊑, 𝑥 ⊑ 𝑥 ′ : 𝑐⟧. Furthermore, 𝑁 [𝛾1] [𝑉1/𝑥] = 𝑁 [𝛾 ′
1
] and

likewise for 𝑁 [𝛾2] [𝑉2/𝑥 ′]. The premise then implies that (𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 ′ [𝛾2] [𝑉2/𝑥 ′]) ∈
E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧, as needed.

• Let 𝑘 ≤ 𝑗 and let 𝜀@𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 be an effect that is caught by either handler – i.e.,

𝜀 ∈ dom(𝜙) or 𝜀 ∈ dom(𝜙 ′). By the premise, it follows that 𝜀 is in both dom(𝜙) and dom(𝜙 ′).
Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑖⟧)𝑘 . Let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑𝑜⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧) .
We need to show that

45

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙) {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝐸𝑟 [raise 𝜀 (𝑉 𝑟) {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})

∈ E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By anti-reduction, it suffices to show that

(𝜙 (𝜀) [𝛾1] [𝑉 𝑙/𝑥] [(𝜆𝑦.handle 𝐸𝑙 [𝑦] {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]})/𝑘],
𝜙 ′ (𝜀) [𝛾2] [𝑉 𝑟/𝑥 ′] [(𝜆𝑦.handle 𝐸𝑟 [𝑦] {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})/𝑘 ′])

∈ (▶E∼⟦𝑑𝜏⟧)𝑘 (V∼⟦𝑑⟧) .

To show this, we apply the premise, as follows. Let𝐻1 = handle 𝐸𝑙 [𝑦] {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]}
and 𝐻2 = handle 𝐸𝑟 [𝑦] {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]}. Let 𝛾 ′1 = 𝛾1,𝑉

𝑙/𝑥𝑖 , (𝜆𝑦.𝐻1)/𝑘𝑖 and let

𝛾 ′
2
= 𝛾2,𝑉

𝑟/𝑥 ′𝑖 , (𝜆𝑦.𝐻2)/𝑘 ′𝑖 . In order to apply the premise, we must prove that (𝛾 ′
1
, 𝛾 ′

2
) ∈

G∼
𝑘 ′⟦Γ⊑, 𝑥𝑖 ⊑ 𝑥 ′𝑖 : 𝑑𝑖 , 𝑘𝑖 ⊑ 𝑘 ′𝑖 : 𝑑𝑜 →𝑑𝜏 𝑑⟧.

We first need to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑖⟧)𝑘 . This holds by assumption. We now need

to show that

((𝜆𝑦.𝐻1), (𝜆𝑦.𝐻2)) ∈ (▶V∼⟦𝑑𝑜 →𝑑𝜏 𝑑⟧)𝑘 .
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉𝐴,𝑉𝐵) ∈ (▶V∼⟦𝑑𝑜⟧)𝑘 ′ . We need to show that

((𝜆𝑦.𝐻1)𝑉𝐴, (𝜆𝑦.𝐻2)𝑉𝐵)
∈ (▶E∼⟦𝑑𝜏⟧)𝑘 ′ (V∼⟦𝑑⟧)

By anti-reduction, it suffices to show that

(handle 𝐸𝑙 [𝑉𝐴] {ret 𝑥 .𝑁 | 𝜙}, handle 𝐸𝑟 [𝑉𝐵] {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′})
∈ (▶E∼⟦𝑑𝜏⟧)𝑘 ′ (V∼⟦𝑑⟧).

By the Löb induction hypothesis, it will suffice to show that

(𝐸𝑙 [𝑉𝐴], 𝐸𝑟 [𝑉𝐵]) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .

Recall that by assumption, we have

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑𝑜⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧).

Thus, it suffices to show that (𝑉𝐴,𝑉𝐵) ∈ (▶V∼⟦𝑑𝑜⟧)𝑘 ′ , which is precisely our assumption.

□

Note that we do not need to show soundness of the term precision congruence rules involving

casts. This will follow from the soundness of the upper and lower bound rules for casts.

Corollary D.30 (reflexivity). Let𝑀 be a term such that Σ | Γ | Δ ⊢𝜎 𝑀 : 𝐴. We have Σ | Γ⊑ ⊨𝜎
𝑀 ⊑ 𝑀 : 𝐴.

Proof. By induction on𝑀 , using the soundness of the term precision relation already proven. □

46

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

D.1.3 Equational Rules.

Lemma D.31 (Value substitution).

𝑥1 ⊑ 𝑥2 : 𝑐 ⊨𝑑𝜎 𝑀 ≡ 𝑁 : 𝑑 𝑉 ≡ 𝑉 ′
: 𝑐

𝑀 [𝑉 /𝑥1] ≡ 𝑁 [𝑉 ′/𝑥2]

Proof. Suppose for all 𝑗 and all (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑, 𝑥𝑙 ⊑ 𝑥𝑟 : 𝑐⟧, that

(𝑥1.𝑀, 𝑥2 .𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧

and

(𝑥2 .𝑁 , 𝑥1 .𝑀) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

Further suppose that for all 𝑗 ,

(𝑉 ,𝑉 ′) ∈ V∼
𝑗 ⟦𝑐⟧

and

(𝑉 ′,𝑉) ∈ V∼
𝑗 ⟦𝑐⟧.

Let 𝑗 be arbitrary, and let (𝛾1, 𝛾2) ∈ G∼⟦Γ⊑⟧. We need to show

(𝑀 [𝑉 /𝑥1], 𝑁 [𝑉 ′/𝑥2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧

and

(𝑁 [𝑉 ′/𝑥2], 𝑀 [𝑉 /𝑥1]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

The second statement is symmetric to the first, so we show only the first.

Let 𝛾 ′
1
= (𝛾1, 𝑥1 = 𝑉) and let 𝛾 ′

2
= (𝛾2, 𝑥2 = 𝑉 ′).

Note that we have𝑀 [𝛾 ′
1
] = 𝑀 [𝛾1] [𝑉 /𝑥1] and 𝑁 [𝛾 ′

2
] = 𝑁 [𝛾2] [𝑉 ′/𝑥2], by definition of substitu-

tion.

By our assumption, it is sufficient to show that (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑗 ⟦Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐⟧.
For this, it sufficies to show that (𝛾 ′

1
(𝑥1), 𝛾 ′2 (𝑥2)) ∈ V∼

𝑗 ⟦𝑐⟧. But 𝛾 ′1 (𝑥1) = 𝑉 and 𝛾 ′
2
(𝑥2)𝑉 ′

, so we

are finished.

□

Lemma D.32 (Monad Unit Left).

let 𝑥 = 𝑦 in 𝑁 ≡ 𝑁 [𝑦/𝑥]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑥 = 𝑦 in 𝑁, 𝑁 [𝑦/𝑥]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑦 is a variable and hence a value, we have by the operational semantics that

let 𝑥 = 𝑦 in 𝑁 ↦→1 𝑁 [𝑦/𝑥] .
Thus, by anti-reduction, it suffices to show that

(𝑁 [𝑦/𝑥], 𝑁 [𝑦/𝑥]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

But this follows by reflexivity (Corollary D.30).

47

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

□

Lemma D.33 (Monad Unit Right).

let 𝑥 = 𝑀 in 𝑥 ≡ 𝑀

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑥 = 𝑀 in 𝑥,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑥 is a variable and hence a value, we have by the operational semantics that

let 𝑥 = 𝑀 in 𝑥 ↦→1 𝑀 [𝑥/𝑥] .
By definition of substitution,𝑀 [𝑥/𝑥] = 𝑀 . Thus, by anti-reduction, it suffices to show that

(𝑀,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity (Corollary D.30).

□

Lemma D.34 (Monad Associativity).

let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃, let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

We apply Lemma D.18, taking 𝐸1 = let 𝑦 = (let 𝑥 = • in 𝑁) in 𝑃 and 𝐸2 = let 𝑥 =

• in let 𝑦 = 𝑁 in 𝑃 .

We first need to show that (𝑀,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, which is true by reflexivity (Corolarry

D.30).

Now, let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(let 𝑦 = (let 𝑥 = 𝑉1 in 𝑁) in 𝑃, let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 in 𝑃) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

According to the operational semantics, we have

(let 𝑥 = 𝑉1 in 𝑁) ↦→1 𝑁 [𝑉1/𝑥] .
Thus,

let 𝑦 = (let 𝑥 = 𝑉1 in 𝑁) in 𝑃 ↦→1 let 𝑦 = 𝑁 [𝑉1/𝑥] in 𝑃 .

Similarly, we have

let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 in 𝑃 ↦→1 (let 𝑦 = 𝑁 in 𝑃) [𝑉2/𝑥] = let 𝑦 = 𝑁 [𝑉2/𝑥] in 𝑃 [𝑉2/𝑥] .
Note that since 𝑥 does not occur in 𝑃 , we have 𝑃 [𝑉2/𝑥] = 𝑃 .

Now, by anti-reduction, it suffices to show

(let 𝑦 = 𝑁 [𝑉1/𝑥] in 𝑃, let 𝑦 = 𝑁 [𝑉2/𝑥] in 𝑃) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

We again apply Lemma D.18, this time with 𝐸1 = let 𝑦 = • in 𝑃 and 𝐸2 = let 𝑦 = • in 𝑃 .

48

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

We first need to show that (𝑁 [𝑉1/𝑥], 𝑁 [𝑉2/𝑥]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧. This follows from reflexivity

(Corollary D.30) and value substitution (Lemma D.31) applied to our assumption on 𝑉1 and 𝑉2.

Now let 𝑘 ′ ≤ 𝑘 and (𝑉 ′
1
,𝑉 ′

2
) ∈ V∼

𝐴
⟦𝑘 ′⟧. We need to show that

(let 𝑦 = 𝑉 ′
1
in 𝑃, let 𝑦 = 𝑉 ′

2
in 𝑃) ∈ E∼

𝑘 ′⟦𝜎⟧V∼⟦𝐵⟧.
By anti-reduction, it suffices to show

(𝑃 [𝑉 ′
1
/𝑦], 𝑃 [𝑉 ′

2
/𝑦]) ∈ E∼

𝑘 ′⟦𝜎⟧V∼⟦𝐵⟧.
This again follows from reflexiviy and value substitution.

□

Lemma D.35 (𝜂-expansion for Booleans).

𝑀 [𝑥 : bool] ≡ if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]}

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ, 𝑥1 ⊑ 𝑥2 : bool⟧. We need to show

(𝑀 [𝛾1], (if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]}) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By definition of substitution, this is equivalent to

(𝑀 [𝛾1], (if 𝛾{}{2}(𝑥)𝑀 [true/𝑥] [𝛾2]𝑀 [false/𝑥] [𝛾2])) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By our assumption on 𝛾1 and 𝛾2, we have that either 𝛾1 (𝑥1) = 𝛾2 (𝑥2) = true or 𝛾1 (𝑥1) = 𝛾2 (𝑥2) =
false.
We show only the former case; the latter is symmetric. In the former case, we need to show

(𝑀 [true/𝑥] [𝛾1], (if true{𝑀 [true/𝑥] [𝛾2]}{𝑀 [false/𝑥] [𝛾2]})) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it is sufficient to show

(𝑀 [true/𝑥] [𝛾1], 𝑀 [true/𝑥] [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.36 (Boolean 𝛽 reduction - true).

if true{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑡

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((if true{𝑁𝑡 }{𝑁𝑓 }) [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

(𝑁𝑡 [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This holds by reflexivity.

□

Lemma D.37 (Boolean 𝛽 reduction - false).

if false{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑓

49

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Proof. Precisely dual to the above proof. □

Lemma D.38 (Eval for If).

if 𝑀{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 } IfEval

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((if 𝑀{𝑁𝑡 }{𝑁𝑓 }) [𝛾1], (let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 }) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Weapply LemmaD.18, with𝐸1 = if •{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]} and𝐸2 = let 𝑥 = • in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]}.
We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼

𝑗 ⟦𝜏⟧V∼⟦bool⟧. This follows by reflexivity

(Corollary D.30).

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦bool⟧. We need to show that

((if 𝑉1{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (let 𝑥 = 𝑉2 in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By definition of V∼⟦bool⟧, either 𝑉1 = 𝑉2 = true or 𝑉1 = 𝑉2 = false. We consider the first

case; the second is symmetric.

We need to show

((if true{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (let 𝑥 = true in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

(𝑁𝑡 [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.39 (𝛽-reduction for functions).

(𝜆𝑥 .𝑀)𝑉 ≡ 𝑀 [𝑉 /𝑥] FunBeta

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(((𝜆𝑥 .𝑀)𝑉) [𝛾1], (𝑀 [𝑉 /𝑥]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑉 is a value, it suffices by anti-reduction to show that

(𝑀 [𝑉 /𝑥] [𝛾1], 𝑀 [𝑉 /𝑥] [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.40 (𝜂-expansion for functions). Let𝑉𝑓 be a value such that Σ | Γ | Δ ⊢∅ 𝑉 : 𝐴 →𝜎 ′ 𝐵.

We have Σ | Γ⊑ ⊨𝜎 𝑉𝑓 ≡ (𝜆𝑥 .𝑉𝑓 𝑥) : (𝐴 →𝜎 ′ 𝐵).

Proof. Let 𝑗 be arbitrary. We need to show

(𝑉𝑓 , (𝜆𝑥 .𝑉𝑓 𝑥)) ∈ E∼
𝑗 ⟦∅⟧V∼⟦𝐴 →𝜎 ′ 𝐵⟧.

As these are values, it suffices by Lemma D.6 to show that they are related in V∼
𝑗 ⟦𝐴 →𝜎 ′ 𝐵⟧. To

this end, let 𝑘 ≤ 𝑗 and let (𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝐴⟧. We claim that

50

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(𝑉𝑓 𝑉𝑖1, (𝜆𝑥 .𝑉𝑓 𝑥)𝑉𝑖2) ∈ E∼
𝑘
⟦𝜎 ′⟧V∼⟦𝐵⟧.

By anti-reduction, it will suffice to show that

(𝑉𝑓 𝑉𝑖1,𝑉𝑓 𝑉𝑖2) ∈ E∼
𝑘
⟦𝜎 ′⟧V∼⟦𝐵⟧.

By reflexivity (Corollary D.30), we know that (𝑉𝑓 ,𝑉𝑓) ∈ E∼
𝑘
⟦∅⟧𝐴 →𝜎 ′ 𝐵, and since 𝑉𝑓 is a value,

this means that (𝑉𝑓 ,𝑉𝑓) ∈ V∼
𝑘
⟦𝐴 →𝜎 ′ 𝐵⟧. This immediately implies the desired result, since

(𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝐴⟧.

□

Lemma D.41 (AppEval).

𝑀 𝑁 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((𝑀 𝑁) [𝛾1], (let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦) [𝛾2]) ∈ E∼
𝑗 ⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

We apply Lemma D.18, with 𝐸1 = (•𝑁 [𝛾2]) and 𝐸2 = let 𝑥 = • in let 𝑦 = 𝑁 [𝛾2] in 𝑥 𝑦.

We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼
𝑗 ⟦𝜏⟧V∼⟦𝐴𝑖 →𝜏𝐴 𝐴𝑜⟧. This follows by reflexivity.

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. We need to show that

((𝑉1 𝑁 [𝛾1]), (let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 [𝛾2] in 𝑥 𝑦)) ∈ E∼
𝑘
⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

By anti-reduction, it suffices to show

((𝑉1 𝑁 [𝛾1]), (let 𝑦 = 𝑁 [𝛾2] in 𝑉2 𝑦)) ∈ E∼
𝑘
⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

We again apply Lemma D.18, this time with 𝐸1 = (𝑉1 •) and 𝐸2 = let 𝑦 = • in 𝑉2 𝑦.

We need to show (𝑁 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑘
⟦𝜏⟧V∼⟦𝐴𝑖⟧, which holds by reflexivity. Now let 𝑘 ′ ≤ 𝑘

and let (𝑉 ′
1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝐴𝑖⟧. We need to show that

((𝑉1𝑉 ′
1
), (let 𝑦 = 𝑉 ′

2
in 𝑉2 𝑦)) ∈ E∼

𝑘 ′⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.
By anti-reduction, it suffices to show

((𝑉1𝑉 ′
1
), (𝑉2𝑉 ′

2
)) ∈ E∼

𝑘 ′⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.
This follows from our assumptions on 𝑉1 and 𝑉2 and on 𝑉 ′

1
and 𝑉 ′

2
.

□

Lemma D.42 (HandleBetaRet).

handle 𝑥 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑥/𝑦]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑥 {ret 𝑦.𝑀 | 𝜙}) [𝛾1], (𝑀 [𝑥/𝑦]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑥 is a value, the above handle term steps, and by anti-reduction it is sufficient to show

((𝑀 [𝑥/𝑦] [𝛾1]), (𝑀 [𝑥/𝑦]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

51

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

□

Lemma D.43 (HandleBetaRaise).

handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙} ≡ 𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙}) [𝛾1],
(𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]) [𝛾2])

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Let 𝐸 = let 𝑜 = • in 𝑁𝑘 [𝛾1]. Our goal is to show

((handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Note that 𝐸#𝜀. By anti-reduction, it suffices to show

((𝜙 (𝜀) [𝛾1] [𝜆𝑜 ′ .handle 𝐸 [𝑜 ′] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}/𝑘]),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

That is, we need to show

((𝜙 (𝜀) [𝛾1] [𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}/𝑘]),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By ValSubst, it suffices to show (1) for all related (𝑉𝑓 1,𝑉𝑓 2) ∈ V∼
𝑗 ⟦𝐴𝑖 →𝜎 𝐵⟧ and 𝛾 ′

1
= 𝛾1,𝑉𝑓 1/𝑘

and 𝛾 ′
2
= 𝛾2,𝑉𝑓 2/𝑘 , we have

(𝜙 (𝜀) [𝛾 ′
1
], 𝜙 (𝜀) [𝛾 ′

2
]) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐵⟧,
and (2),

((𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

(1) follows from relfexivity. To show (2), we will use transitivity (Lemma D.66). If ∼ is <, then

note that by MonadUnitL we have

(let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1], 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧,

and by soundness of the congruence rules we have

52

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

((𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

Then by transitivity, it will suffice to show that

((𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

By congruence for lambdas, it suffices to show that, given related values (𝑉1,𝑉2) ∈ V∼
𝜔 ⟦𝐴𝑖⟧, we

have

((handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] [𝑉1/𝑜 ′] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}),
(handle 𝑁𝑘 [𝛾2] [𝑉2/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

This follows from the soundness of the congruence rules.

On the other hand, if ∼ is >, then similarly by MonadUnitL we have

(let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1], 𝑁𝑘 [𝛾1] [𝑜 ′/𝑜]) ∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐵⟧.

It then suffices to show that

((𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾1] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧,

which again follows from the soundness of the congruence rules.

□

Lemma D.44 (RaiseEval).

raise 𝜀 (𝑀) ≡ let 𝑥 = 𝑀 in raise 𝜀 (𝑥)

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((raise 𝜀 (𝑀)) [𝛾1], (let 𝑥 = 𝑀 in raise 𝜀 (𝑥)) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

We apply Monadic Bind (Lemma D.18), with 𝐸1 = raise 𝜀 (•) and 𝐸2 = let 𝑥 = • in raise 𝜀 (𝑥).
We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼

𝑗 ⟦𝜏⟧V∼⟦𝐴⟧. This follows from reflexivity (Corol-

lary D.30).

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

((raise 𝜀 (𝑉1)) [𝛾1], (let 𝑥 = 𝑉2 in raise 𝜀 (𝑥)) [𝛾2]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

As 𝑉2 is a value, the above let term steps. By anti-reduction, it suffices to show

53

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

((raise 𝜀 (𝑉1)), (raise 𝜀 (𝑉2))) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows from our assumption on 𝑉1 and 𝑉2 and the soundness of the term congruence rule

for raise (Lemma D.28).

□

Lemma D.45 (HandleEmpty).

handle 𝑀 {ret 𝑥 .𝑁 | ∅} ≡ let 𝑥 = 𝑀 in 𝑁

Proof. We show one direction of the equivalence; the other is symmetric.

Let 𝑗 be arbitrary and let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑀 {ret 𝑥 .𝑁 | ∅}) [𝛾1],
(let 𝑥 = 𝑀 in 𝑁) [𝛾2])

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By Monadic Bind (Lemma D.18) and the fact that neither evaluation context catches any effects,

it suffices to show that

(handle 𝑉1 {ret 𝑥 .𝑁 [𝛾1] | ∅},
let 𝑥 = 𝑉2 in 𝑁 [𝛾2])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐵⟧. By anti-reduction, it will suffice to show that

(𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 [𝛾2] [𝑉2/𝑥]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

Using ValSubst, the result follows by reflexivity and our assumption on 𝑉1 and 𝑉2.

□

Lemma D.46.

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀) ∀𝜀 ∈ dom(𝜓) .𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 } : 𝜎 !𝐵

HandleExt

Proof. We show one direction of the equivalence; the other is symmetric.

The proof is by Löb induction. We assume that

((handle 𝑀 {ret .1 | ′}𝑦𝑁𝜙) [𝛾1], (handle 𝑀 {ret .2 | ′}𝑦𝑁𝜓) [𝛾2]) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐵⟧) .

for all 𝑘 ≤ 𝑗 , (𝛾1, 𝛾2) ∈ (▶G∼⟦Γ⟧)𝑘 and (𝑀 ′
1
, 𝑀 ′

2
) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).

Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑀 {ret .1 | 𝑦}𝑁𝜙) [𝛾1], (handle 𝑀 {ret .2 | 𝑦}𝑁𝜓) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧

for all (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

We apply Monadic Bind (Lemma D.18). It suffices to consider the following cases:

54

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

• Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

((handle 𝑉1 {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}), (handle 𝑉2 {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows by anti-reduction and reflexivity.

• Let 𝑘 ≤ 𝑗 and let 𝜀 ∈ 𝜎 be an effect caught by either handler, i.e., 𝜀 is in dom(𝜙) or

dom(𝜓). Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜖⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜖⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐵⟧).
We need to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(handle 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

If 𝜀 ∈ dom(𝜙), then by the premise, we have𝜓 (𝜀) = 𝜙 (𝜀), so both sides step, and it suffices

by anti-reduction to show

(𝜙 (𝜀) [𝛾1] [𝑉 𝑙/𝑥] [(𝜆𝑧.handle 𝐸𝑙 [𝑧] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]})/𝑘],
𝜙 (𝜀) [𝛾2] [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐵⟧) .

By ValSubst, it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜖⟧)𝑘 , which is true by assumption,

and that

((𝜆𝑧.handle 𝐸𝑙 [𝑧] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ (▶V∼⟦𝑑𝜖 →𝜎 𝐵⟧)𝑘 .
By congruence for lambdas, it suffices to show that, given values (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜖⟧)𝑘 , we
have

(handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝐸𝑟 [𝑉2] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐵⟧).

This follows by the Löb induction hypothesis and our assumption on 𝐸𝑙 and 𝐸𝑟 .

Now assume that 𝜀 ∉ dom(𝜙). Then note that the first handle term does not step, while the

second handle term steps to

𝜓 (𝜀) [𝛾2] [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘] .
By the premise, we have𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Thus, by anti-reduction, it suffices to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(𝑘 (raise 𝜀 (𝑥)) [𝛾2) [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

55

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

That is, it will suffice to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
((𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}) (raise 𝜀 (𝑉)𝑟)))

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

Neither term steps, so it suffices to show they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

We need to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜖⟧)𝑘 , which is true by assumption, and that given

𝑘 ′ ≤ 𝑘 and related values (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜖⟧)𝑘 ′ , we have

((handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
((𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})𝑉2))

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐵⟧) .
By anti-reduction, it suffices to show

((handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(handle 𝐸𝑟 [𝑉2] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐵⟧) .

This follows by the Löb induction hypothesis and our assumption on 𝐸𝑙 and 𝐸𝑟 .

□

D.1.4 Cast, Error, and Subtyping Properties.

Lemma D.47 (Err-bot).

𝑀 : 𝑑𝜎
𝑟
! 𝑐𝑟

℧ ⊑ 𝑀 : 𝑑𝜎 ! 𝑐

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show

(℧[𝛾1], 𝑀 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

This follows from the definition of the logical relation: If ∼ is < (counting steps on the left), then

we are finished by the definition of the E⪯⟦⟧ relation, because ℧ ↦→0 ℧.
If ∼ is > (counting steps on the right), then we are similarly finished, because𝑀 ↦→0 𝑀 and the

left-hand term is ℧.
□

Lemma D.48 (Err-strict). 𝐸 [℧] ≡ ℧
Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 , 𝑑𝜎 , and 𝑐 be

arbitrary. We need to show

(𝐸 [℧],℧) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

By anti-reduction, it is sufficient to show

(℧,℧) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧,

which is easily seen to hold by definition of the logical relation.

56

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

□

Lemma D.49 (Monotonicity of Subtyping). If 𝑐 ≤: 𝑑 then V⟦𝑐⟧ ⊆ V⟦𝑑⟧
Further, if 𝑅 ⊆ 𝑆 then K⟦𝑑⟧𝑅 ⊆ K⟦𝑐⟧𝑆 ,
Further, if 𝑐𝜎 ≤: 𝑑𝜎 then both

• E⟦𝑐⟧𝑅 ⊆ E⟦𝑑⟧𝑆
• R⟦𝑐⟧𝑅 ⊆ R⟦𝑑⟧𝑆

Proof. By mutual induction on the subtyping proofs. First the type subtyping cases:

(1) bool ≤: bool: trivial.
(2) 𝑐𝑖 →𝑐𝑒 𝑐𝑜 ≤: 𝑑𝑖𝑡𝑜𝑑𝑒𝑑𝑜 . Assume (𝑉𝑓 ,𝑉

′
𝑓
) ∈ V⟦𝑐𝑖 →𝑐𝑒 𝑐𝑜⟧, we need to show (𝑉𝑓 ,𝑉

′
𝑓
) ∈

V⟦𝑑𝑖 →𝑑𝑒 𝑑𝑜⟧. Let (𝑉𝑖 ,𝑉 ′
𝑖) ∈ V⟦𝑑𝑖⟧. Then by inductive hypothesis, (𝑉𝑖 ,𝑉 ′

𝑖) ∈ V⟦𝑐𝑖⟧.
Therefore (𝑉𝑓𝑉𝑖 ,𝑉

′
𝑓
𝑉 ′
𝑖) ∈ E⟦𝑐𝑒⟧V⟦𝑐𝑜⟧ and the result follows by the two inductive hypothe-

ses.

The K⟦·⟧ case follows by a similar argument to the function case.

The E⟦·⟧ case follows by inductive hypothesis.

Next the R⟦·⟧ cases:

(1) ? ≤: ?: trivial

(2)

𝑐 ≤: Σ
𝑐 ≤: ?

: trivial by definition of R⟦?⟧

(3)

𝑐 ≤: 𝑑
𝑐 ≤: 𝐼𝑛 𝑗 (𝑑)

: trivial by definition of R⟦𝐼𝑛 𝑗 (𝑖, 𝑑)⟧

(4)

𝑐 ≤: 𝑑
𝐼𝑛 𝑗 (𝑐) ≤: 𝐼𝑛 𝑗 (𝑑)

: trivial by definition of R⟦𝐼𝑛 𝑗 (𝑖, 𝑑)⟧

(5)

dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 .𝜀 : 𝑐

′ { 𝑑 ′ ∈ 𝑑 ′𝑐 ∧ 𝑐 ≤: 𝑐′ ∧ 𝑑 ′ ≤: 𝑑
𝑑𝑐 ≤: 𝑑 ′𝑐

: Follows using Löb induction by themono-

tonicity of subtyping for the V∼⟦·⟧ and K∼⟦·⟧ relations.

□

We next prove generalized versions of the cast properties ValUpL, ValUpR, ValDnL, ValDnR,

EffUpL, EffUpR, EffDnL, EffDnR. These are proved simultaneously by induction on the type precision

derivation and by Löb-induction.

Lemma D.50 (ValUpR-general).

𝑐 : 𝐴 ⊑ 𝐴′

𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ ⟨𝐴′′ ↢ 𝐴′⟩𝑁 : 𝑐 ◦ 𝑒
Proof. We need to show that

(𝑀, ⟨𝐴′′ ↢ 𝐴′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐 ◦ 𝑒⟧.

The proof is by induction on the precision derivation 𝑒 . By monadic bind (Lemma D.18), with

𝐸1 = • and 𝐸2 = ⟨𝐴′′ ↢ 𝐴′⟩•, it suffices to show

(𝑉1, ⟨𝐴′′ ↢ 𝐴′⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐 ◦ 𝑒⟧,

57

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We continue by cases on 𝑒 .

• Case 𝑒 = bool. We have 𝐴 = 𝐴′ = 𝐴′′ = bool, and 𝑐 = bool. Thus 𝑐 ◦ 𝑒 = bool.
Examining the operational semantics, we see that

(⟨bool↢ bool⟩)(𝑉1) ↦→1 𝑉1 .

Thus, by anti-reduction, it suffices to show

(𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧.

This is true by assumption and Lemma D.6.

• Case 𝑒 = 𝑒𝑖 →𝑒𝜎 𝑒𝑜 . We have 𝐴′ = 𝐴′
𝑖 →𝜎 ′

𝐴
𝐴′
𝑜 and 𝐴

′′ = 𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜 , and also 𝑒𝑖 : 𝐴

′
𝑖 ⊑ 𝐴′′

𝑖

and 𝑒𝑜 : 𝐴′
𝑜 ⊑ 𝐴′′

𝑜 .

By inversion, we see that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . Thus, we have that 𝑐 ◦ 𝑒 = (𝑐𝑖 →𝑐𝜎 𝑐𝑜) ◦ (𝑒𝑖 →𝑒𝜎

𝑒𝑜) = (𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜).
We need to show that

(𝑉1, ⟨(𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜) ↢ (𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜)⟩𝑉2) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦(𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜)⟧.

As both terms are values, it suffices by LemmaD.6 to show they are related inV∼
𝑘
⟦(𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜)⟧.

To this end, let 𝑘 ′ ≤ 𝑘 and (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝑐𝑖 ◦ 𝑒𝑖⟧. We need to show that

(𝑉1𝑉 𝑙 , (⟨(𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜) ↢ (𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜)⟩𝑉2)𝑉 𝑟) ∈ E∼

𝑘 ′⟦𝑐𝜎 ◦ 𝑒𝜎⟧V∼⟦𝑐𝑜 ◦ 𝑒𝑜⟧.
By anti-reduction, it suffices to show that

(𝑉1𝑉 𝑙 , ⟨𝐴′′
𝑜
↢ 𝐴′

𝑜⟩⟨𝜎 ′′
𝐴
↢ 𝜎 ′

𝐴⟩(𝑉2 ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝑐𝜎 ◦ 𝑒𝜎⟧V∼⟦𝑐𝑜 ◦ 𝑒𝑜⟧.

By the induction hypothesis applied twice, it suffices to show

(𝑉1𝑉 𝑙 , (𝑉2 ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝑐𝜎⟧V∼⟦𝑐𝑜⟧.

Finally, it suffices by the soundness of the term precision congruence rule for function

application (Lemma D.25 to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧, and that

(𝑉 𝑙 , ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑐⟧.

The former is true by our assumption on 𝑉1 and 𝑉2. The latter follows by the induction

hypothesis and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

□

Lemma D.51 (ValUpL-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒
Σ | Γ⊑ ⊢𝑑𝜎 ⟨𝐴′ ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝑒

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(⟨𝐴′ ↢ 𝐴⟩𝑀 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒⟧.

By monadic bind (Lemma D.18), with 𝐸1 = ⟨𝐴′ ↢ 𝐴⟩• and 𝐸2 = •, it suffices to show

58

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(⟨𝐴′ ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐 ◦ 𝑒⟧.

We continue by cases on 𝑐 . The case 𝑐 = bool is similar to that in the previous lemma, so we

skip to considering the case 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . By inversion, we see that 𝑒 = 𝑒𝑖 →𝑒𝜎 𝑒𝑜 .

We have𝐴 = 𝐴𝑖 →𝜎̂ 𝐴𝑜 and𝐴
′ = 𝐴′

𝑖 →𝜎̂ ′ 𝐴′
𝑜 , and also Thus, we have that 𝑐 ◦𝑒 = (𝑐𝑖 ◦𝑒𝑖) →𝑐𝜎◦𝑒𝜎

(𝑐𝑜 ◦ 𝑒𝑜).
We need to show that

(⟨(𝐴′
𝑖 →𝜎̂ ′ 𝐴′

𝑜) ↢ (𝐴𝑖 →𝜎̂ 𝐴𝑜)⟩𝑀 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒𝑖 →𝑒𝜎 𝑒𝑜⟧.

Similar to before, it suffices to show that these terms are related at V∼
𝑘
⟦𝑒𝑖 →𝑒𝜎 𝑒𝑜⟧. This is

similar to proof of the previous lemma, and hence omitted.

□

Lemma D.52 (ValDnL-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑒

Σ | Γ⊑ ⊢𝑑𝜎 ⟨𝐴 ↞ 𝐴′⟩𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒

Proof. This proof is dual to the proof of ValUpR-general (Lemma D.50) and is hence omitted. □

Lemma D.53 (ValDnR-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒
Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ ⟨𝐴′

↞ 𝐴′′⟩𝑁 : 𝑐

Proof. This proof is dual to the proof of ValUpL-general (Lemma D.51) and is hence omitted. □

Lemma D.54 (EffUpR-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑 ′
𝜎
𝑀 ⊑ ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁 : 𝑐

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

We prove this statement by Löb induction (Lemma D.16). That is, assume for all 𝑘 ≤ 𝑗 and all

(𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(𝑀 ′, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧. We need to show

(𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

We proceed by cases on 𝑑 ′𝜎 . The case 𝑑
′
𝜎 = ? is immediate, so consider 𝑑 ′𝜎 = inj(𝑑𝑐), where

𝑑𝑐 : 𝜎𝑐 ⊑ Σ |supp(𝜎𝑐) . In this case, we know that 𝜎 ′′ = ?. Furthermore, we have

59

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

𝑑𝜎 ◦ 𝑑 ′𝜎 = 𝑑𝜎 ◦ (inj(𝑑𝑐)) = inj(𝑑𝜎 ◦ 𝑑𝑐).
Thus, we need to show

(𝑀, ⟨?↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By monadic bind (Lemma D.18), it will suffice to consider the following cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show

(𝑉1, ⟨?↢ 𝜎 ′⟩𝑉2) ∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By anti-reduction, it suffices to show that

(𝑉1,𝑉2) ∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

As 𝑉1 and 𝑉2 are values, it suffices by Lemma D.6 to show that (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧, which is

true by assumption.

• Let 𝑘 ≤ 𝑗 and 𝜀@𝑐𝜀 { 𝑑𝜀 ∈ 𝑑𝜎 be an effect that is caught by ⟨?↢ 𝜎 ′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧). We need to show that

(𝐸𝑙 [raise 𝜀@𝑐𝑙𝜀 { 𝑑𝑙𝜀 (𝑉 𝑙)],
⟨?↢ 𝜎 ′⟩𝐸𝑟 [raise 𝜀@𝑐𝑟𝜀 { 𝑑𝑟𝜀 (𝑉 𝑟)]) ∈ E∼

𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By anti-reduction, it suffices to show that

(𝐸𝑙 [raise 𝜀@𝑐𝑙𝜀 { 𝑑𝑙𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩raise 𝜀@𝑐?𝜀 { 𝑑?𝜀 (⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟) in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

Let 𝑉 ′𝑟
be the term to which ⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

(𝐸𝑙 [raise 𝜀@𝑐𝑙𝜀 { 𝑑𝑙𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩raise 𝜀 (𝑉 ′𝑟) in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

As neither term steps, it suffices to show they are related in R∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧..

To this end, we need to show (1) (𝑉 𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐𝜀 ◦ 𝑐′𝜀⟧)𝑘 , and (2) given 𝑘 ′ ≤ 𝑘 and

(𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀 ◦ 𝑑 ′𝜀⟧)𝑘 ′ , we have

(𝐸𝑙 [𝑉1],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2 in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ (▶E∼⟦Inj(𝐼 , 𝑑𝜎 ◦ 𝑑𝑐)⟧)𝑘 ′ (V∼⟦𝑐⟧) .

To show (1), it suffices by forward reduction to show that (𝑉 𝑙 , ⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜀 ◦
𝑐′𝜀⟧)𝑘 . This follows inductively from ValUpR (which we are proving simultaneously and can

therefore apply at smaller types), and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

60

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

To show (2), let 𝑉 ′
2
be the value to which ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2 steps. It suffices by anti-reduction to

show

(𝐸𝑙 [𝑉1], ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦Inj(𝐼 , 𝑑𝜎 ◦ 𝑑𝑐)⟧)𝑘 ′ (V∼⟦𝑐⟧) .
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉1,𝑉 ′
2
) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 ′ . By forward

reduction, it suffices to show that

(𝑉1, ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑑𝜖⟧) .
Now inductively by ValDnR, it suffices to show (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀 ◦ 𝑑 ′𝜀⟧)𝑘 ′ , which is our

assumption.

The case where 𝑑 ′𝜎 is a concrete effect precision derivation is similar to the above.

□

Lemma D.55 (EffUpL-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑 ′
𝜎
⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝑐

Proof. This is proved similarly to the above. □

Lemma D.56 (EffDnL-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑′𝜎
⟨𝜎 ↞ 𝜎 ′⟩𝑀 ⊑ 𝑁 : 𝑐

Proof. We prove this by Löb induction (Lemma D.16). That is, assume for all 𝑘 ≤ 𝑗 and all

(𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧) .
Let (𝛾1, 𝛾2) ∈ G∼

𝑗 ⟦Γ⊑⟧, and let (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

By monadic bind (Lemma D.18) and the fact that effect casts are the identity on values, it will

suffice to show the following:

Let 𝑘 ≤ 𝑗 and 𝜀@𝑐𝜀 { 𝑑𝜀 ∈ 𝑑 ′𝜎 be an effect that is caught by ⟨𝜎 ↞ 𝜎 ′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧). We need to show that

61

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [raise 𝜀@𝑐𝑙𝜀 { 𝑑𝑙𝜀 (𝑉 𝑙)],
𝐸𝑟 [raise 𝜀@𝑐𝑟𝜀 { 𝑑𝑟𝜀 (𝑉 𝑟)]𝑁)

∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

Note that if 𝜖 ∉ 𝜎 , then the left hand side steps to ℧, in which case we are finished by ErrBot

(Lemma D.47). Otherwise, the proof proceeds alalogously to EffUpR (Lemma D.54), with upcasts

and downcasts interchanged.

□

Lemma D.57 (EffDnR-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 : 𝑐

Proof. We prove this statement by Löb induction (Lemma D.16). That is, assume for all 𝑘 ≤ 𝑗

and all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(𝑀 ′, ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧) .

Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧, and let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧. We need to show

(𝑀, ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

By monadic bind (Lemma D.18) and the fact that effect casts are the identity on values, it will

suffice to show the following:

Let 𝑘 ≤ 𝑗 and 𝜀@𝑐𝜀 { 𝑑𝜀 ∈ 𝑑𝜎 ◦ 𝑑 ′𝜎 be an effect that is caught by ⟨𝜎 ′
↞ 𝜎 ′′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈

(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧). We need to show that

(𝐸𝑙 [raise 𝜀@𝑐𝑙𝜀 { 𝑑𝑙𝜀 (𝑉 𝑙)],
⟨𝜎 ′
↞ 𝜎 ′′⟩𝐸𝑟 [raise 𝜀@𝑐𝑟𝜀 { 𝑑𝑟𝜀 (𝑉 𝑟)]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

First note that by Lemma D.21, there exist 𝑐1, 𝑐2, 𝑑1, and 𝑑2 such that 𝑐𝜀 = 𝑐1 ◦ 𝑐2 and 𝑑𝜀 = 𝑑1 ◦ 𝑑2
and 𝜀@𝑐1 { 𝑑1 ∈ 𝑑𝜎 and 𝜀@𝑐2 { 𝑑2 ∈ 𝑑 ′𝜎 . In particular, this that 𝜀 ∈ 𝜎 ′

, so the downcast from 𝜎 ′′

to 𝜎 ′
does not fail. Let 𝑐𝐿 = 𝑐𝑙

1
(= 𝑐𝑙𝜀), 𝑐𝑀 = 𝑐𝑟

1
= 𝑐𝑙

2
, and 𝑐𝑅 = 𝑐𝑟

2
(= 𝑐𝑟𝜀), and likewise define 𝑑𝐿, 𝑑𝑀

and 𝑑𝑅 .

By anti-reduction, it suffices to show that

(𝐸𝑙 [raise 𝜀@𝑐𝐿 { 𝐷𝐿 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩raise 𝜀@𝑐𝑀 { 𝑑𝑀 (⟨𝑐𝑀 ↞ 𝑐𝑅⟩𝑉 𝑟) in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Let 𝑉 ′𝑟
be the term to which ⟨𝑐𝑀 ↞ 𝑐𝑅⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

62

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(𝐸𝑙 [raise 𝜀@𝑐𝐿 { 𝐷𝐿 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩raise 𝜀@𝑐𝑀 { 𝑑𝑀 (𝑉 ′𝑟) in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

As neither term steps, it suffices to show they are related in R∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. To this end, we need

to show (1) (𝑉 𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐1⟧)𝑘 , and (2) given 𝑘 ′ ≤ 𝑘 and (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑1⟧)𝑘 ′ , we have

(𝐸𝑙 [𝑉1],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2 in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .

(1) follows from forward reduction and the inductive hypothesis for value types. To show (2), let

𝑉 ′
2
be the value to which ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2 steps. It suffices by anti-reduction to show

(𝐸𝑙 [𝑉1], ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧).

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉1,𝑉 ′
2
) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 ′ . By forward

reduction, it suffices to show that

(𝑉1, ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑑𝜀⟧) .
Now inductively by ValUpR, it suffices to show (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑1⟧)𝑘 ′ , which is our assumption.

The case where 𝑑 ′𝜎 is a concrete effect precision derivation is similar to the above. □

Lemma D.58 (ValUpEval).

⟨𝐵 ↢ 𝐴⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((⟨𝐵 ↢ 𝐴⟩𝑀) [𝛾1], (let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By Monadic Bind (Lemma D.18) and reflexivity, it will suffice to show that for all 𝑘 ≤ 𝑗 let

(𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧, we have

((⟨𝐵 ↢ 𝐴⟩𝑉1), (let 𝑥 = 𝑉2 in ⟨𝐵 ↢ 𝐴⟩𝑥)) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

((⟨𝐵 ↢ 𝐴⟩𝑉1), (⟨𝐵 ↢ 𝐴⟩𝑉2)) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By congruence, it suffices to show

63

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(𝑉1, 𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows from our assumption on 𝑉1 and 𝑉2.

□

Lemma D.59 (ValDnEval).

⟨𝐴 ↞ 𝐵⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐴 ↞ 𝐵⟩𝑥

Proof. Dual to the above. □

Lemma D.60 (cast-retraction). let 𝐴 ⊑ 𝐵 and 𝜎 ⊑ 𝜎 ′
, and let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

. Let

Σ | Γ⊑ ⊢𝜎 𝑀 ⊑ 𝑁 : 𝐴. The following hold:

(1) Σ | Γ⊑ ⊨𝜎 ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝐴

(2) Σ | Γ⊑ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝐴

Proof. We prove stronger, “pointwise" version of the above statemenets. Namely, we assume

(𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, and show, for example, that (⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.
The proof is by simultaneous induction on the derivations 𝑐 and 𝑑𝜎 .

(1) Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦𝐴⟧. Suppose (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show

(⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.18), it suffices to show that

(⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧.

We proceed by induction on the precision derivation 𝑐 . If 𝑐 = bool, then we need to show

(⟨bool ↞ bool⟩⟨bool↢ bool⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

According to the operational semantics, we have that

⟨bool ↞ bool⟩⟨bool↢ bool⟩𝑉1 ↦→2 𝑉1.

So by anti-reduction (Lemma D.8), it suffices to show that (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which

follows from our assumption.

If 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 , then 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 and 𝐵 = 𝐵𝑖 →𝜎𝐵 𝐵𝑜 . We need to show

(⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↞ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,𝑉2)
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧.

As both of these are values, it suffices to show that they are related in V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. To
this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘 ′⟦𝐴𝑖⟧. We need to show that

((⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↞ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

𝑉2𝑉
𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
The former term steps, so by anti-reduction, it suffices to show that

64

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩ ⟨𝜎𝐴 ↞ 𝜎𝐵⟩((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1) ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙),𝑉2𝑉 𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show that

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
𝑉2𝑉

𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
We will appeal to transitivity (Lemma D.66). We continue by cases on ∼. First assume ∼ is <.

Let 𝑉 ′𝑟
be the value to which ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟

steps. If we show (1)

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

and (2)

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),
𝑉2𝑉

𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,
then we will be finished by transitivity.

To show (1), first note that by monotonicity of casts (Lemma D.65), it suffices to show that

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
⟨𝐵𝑜 ↢ 𝐴𝑜⟩

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐵𝑜⟧.

65

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Then by commutativity of casts (Corollary D.63), it suffices to show

(⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙),
⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐴𝑜⟧.

By monotonicity of casts again, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙),
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By soundness of the precision rule for function application, it suffices to show that (𝑉1,𝑉2) ∈
V∼

𝑘
⟦(𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟧ and that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟) ∈ E∼

𝑘
⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former

holds by assumption, and to show the latter, it suffices by forward reduction to show (⟨𝐴𝑖 ↞
𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟) ∈ E∼

𝑘
⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. This follows from the

inductive hypothesis and assumption on 𝑉 𝑙
and 𝑉 𝑟

.

To show (2), it suffices by the inductive hypothesis applied twice to show

((𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),𝑉2𝑉 𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,

By forward reduction, it suffices to show

((𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),𝑉2𝑉 𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,

By soundness of function application, it suffices to show that 𝑉2 is related to itself at

V∼
𝜔 ⟦(𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟧ and that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟 ,𝑉 𝑟) ∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former holds

by reflexivity (Corollary D.30), and to show the latter it suffices by forward reduction to show

that

(⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟 ,𝑉 𝑟) ∈ E∼
𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧,

which follows by the inductive hypothesis and reflexivity.

The case when ∼ is < is analogous.

(2) Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦𝐴⟧. We use Löb induction. We assume that for all 𝑘 ≤ 𝑗 and all related

terms (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.18), it suffices to consdier the following cases:

66

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(a) Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧

This follows by anti-reduction and assumption.

(b) Let 𝑘 ≤ 𝑗 and let 𝜀@𝐶 { 𝐷 ∈ 𝜎 . Let 𝐶′
and 𝐷 ′

be the types such that 𝜀@𝐶′ { 𝐷 ′ ∈ 𝜎 ′
.

Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼
) ⟦𝐷⟧𝑘 (E

∼⟦𝜎⟧V∼⟦𝐴⟧) .
We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

The first term steps, so by anti-reduction it suffices to show

(⟨𝜎 ↞ 𝜎 ′⟩(let 𝑥 = ⟨𝐷 ↞ 𝐷 ′⟩raise 𝜀 (⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑥]),
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩raise 𝜖 (⟨𝐶 ↞ 𝐶′⟩𝑉 ′𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩let 𝑥 = ⟨𝐷 ↞ 𝐷 ′⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let 𝑦′ be the value to which ⟨𝐷 ↞ 𝐷 ′⟩𝑦 steps. Let 𝑉 ′′𝑙
be the value to which ⟨𝐶 ↞ 𝐶′⟩𝑉 ′𝑙

steps.

By anti-reduction, it suffices to show

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩raise 𝜖 (𝑉 ′′𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Neither term steps, so it suffices to show they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧. To this end,

we first show that (𝑉 ′′𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . By forward reduction, it suffices to show that

(⟨𝐶 ↞ 𝐶′⟩⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . This follows from the inductive hypothesis

for value types and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

We now show that, given 𝑘 ′ ≤ 𝑘 and values (𝑉1,𝑉2) ∈ (▶V∼⟦𝐷⟧)𝑘 ′ , we have

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩𝑉1 in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],
𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
Let 𝑉 ′

1
be the value to which ⟨𝐷 ′ ↢ 𝐷⟩𝑉1 steps. By anti-reduction, it will suffice to show

67

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(let 𝑦 = 𝑉 ′
1
in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],

𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

By forward reduction, it will suffice to show

(let 𝑦 = 𝑉 ′
1
in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑦],

𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

By anti-reduction, it will suffice to show

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑉 ′
1
], 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑉 ′
1
], 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
By forward reduction, it suffices to show

(𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩⟨𝐷 ′ ↢ 𝐷⟩𝑉1], 𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).

By the induction hypothesis for value types, it suffices to show

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
This follows by our assumption on 𝐸𝑙 and 𝐸𝑟 .

□

Lemma D.61 (Gradual subtyping). Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑐′ : 𝐴′ ⊑ 𝐵′
where 𝐴 ≤: 𝐴′

and 𝐵 ≤: 𝐵′
.

Let 𝑑𝜎 : 𝜎1 ⊑ 𝜎2 and 𝑑
′
𝜎 : 𝜎 ′

1
⊑ 𝜎 ′

2
where 𝜎1 ≤: 𝜎 ′

1
and 𝜎2 ≤: 𝜎 ′

2
. Suppose𝑀 ≡ 𝑁 . The following hold:

(1)

Σ | Γ⊑ ⊨𝑑𝜏 𝑀 ⊑ 𝑁 : 𝐴

Σ | Γ⊑ ⊨𝑑𝜏 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵′ ↢ 𝐴′⟩𝑁 : 𝐵′

(2)

Σ | Γ⊑ ⊨𝑑𝜏 𝑀 ⊑ 𝑁 : 𝐵

Σ | Γ⊑ ⊨𝑑𝜏 ⟨𝐴′
↞ 𝐵′⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴′

(3)

Σ | Γ⊑ ⊨𝜎1 𝑀 ⊑ 𝑁 : 𝑑

Σ | Γ⊑ ⊨𝜎 ′
2

⟨𝜎2 ↢ 𝜎1⟩𝑀 ⊑ ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁 : 𝑑

68

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(4)

Σ | Γ⊑ ⊨𝜎2 𝑀 ⊑ 𝑁 : 𝑑

Σ | Γ⊑ ⊨𝜎 ′
1

⟨𝜎 ′
1 ↞ 𝜎 ′

2
⟩𝑀 ⊑ ⟨𝜎1 ↞ 𝜎2⟩𝑁 : 𝑑

Proof. By simultaneous induction on the derivation 𝑐′ : 𝐴′ ⊑ 𝐵′
and 𝑑 ′𝜎 : 𝜎 ′

1
⊑ 𝜎 ′

2
.

(1) We need to show

(⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵′ ↢ 𝐴′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝐵′⟧.

By monadic bind (Lemma D.18), with 𝐸1 = ⟨𝐵 ↢ 𝐴⟩• and 𝐸2 = ⟨𝐵′ ↢ 𝐴′⟩•, it suffices to

show the following.

Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴′⟧. We need to show

(⟨𝐵 ↢ 𝐴⟩𝑉1, ⟨𝐵′ ↢ 𝐴′⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝐵′⟧.

We continue by cases on 𝑐′.
Case 𝑐′ = bool. Then by inversion on the rules for subtyping of precision derivations, we

have 𝑐 = bool.
We need to show

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧

This follows by anti-reduction and our assumption on 𝑉1 and 𝑉2.

Case 𝑐′ = 𝑐′𝑖 →𝑐′𝜎 𝑐′𝑜 : 𝐴′
𝑖 →𝜎 ′

𝐴
𝐴′
𝑜 ⊑ 𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜 .

By inversion on the rules for subtyping for precision derivations, we have that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 ,

where 𝑐′𝑖 ≤: 𝑐𝑖 , and 𝑐𝜎 ≤: 𝑐′𝜎 , and 𝑐𝑜 ≤: 𝑐′𝑜 .
Our assumption then becomes (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟧. We need to show

(⟨𝐵𝑖 →𝜎𝐵 𝐵𝑜
↢ 𝐴𝑖 →𝜎𝐴 𝐴𝑜⟩𝑉1, ⟨𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜
↢ 𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟩𝑉2) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜⟧.

Since both terms are values, it suffices to show they are related in V∼
𝑘
⟦𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐵′

𝑖⟧. We need to show

((⟨𝐵𝑖 →𝜎𝐵 𝐵𝑜
↢ 𝐴𝑖 →𝜎𝐴 𝐴𝑜⟩𝑉1)𝑉 𝑙 ,

(⟨𝐵′
𝑖 →𝜎 ′

𝐵
𝐵′
𝑜
↢ 𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟩𝑉2)𝑉 𝑟)

∈ E∼
𝑘 ′⟦𝜎 ′

𝐵⟧V∼⟦𝐵′
𝑜⟧.

By anti-reduction, it suffices to show

(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙),
⟨𝐵′

𝑜
↢ 𝐴′

𝑜⟩⟨𝜎 ′
𝐵
↢ 𝜎 ′

𝐴⟩(𝑉2 ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟))
∈ E∼

𝑘 ′⟦𝜎 ′
𝐵⟧V∼⟦𝐵′

𝑜⟧.
By the induction hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟))
∈ E∼

𝑘 ′⟦𝜎 ′
𝐴⟧V∼⟦𝐴′

𝑜⟧.

69

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

By soundness of the term precision congruence rule for function application (Lemma D.25),

it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟧, and that

(⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙 , ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝐴′

𝑖⟧.

The former holds by assumption. To show the latter, it suffices by the admissible direction of

gradual subtyping rule ValDnSub (item (2) in Lemma B.1), whose proof does not depend on

the present lemma, to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐵′

𝑖⟧. This is true by assumption.

(2) Similar to the above.

(3) We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝑀, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁) ∈ E∼

𝑗 ⟦𝜎 ′
2
⟧V∼⟦𝑐⟧.

We use Löb induction. That is, we assume as our induction hypothesis that

(⟨𝜎2 ↢ 𝜎1⟩𝑀 ′, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁 ′) ∈ ▶(E∼⟦𝜎 ′

2
⟧) 𝑗 (V∼⟦𝑐⟧),

for all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎 ′
1
⟧) 𝑗 (V∼⟦𝑐⟧), and we show that under this assumption, we have

(⟨𝜎2 ↢ 𝜎1⟩𝑀, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁) ∈ E∼

𝑗 ⟦𝜎 ′
2
⟧V∼⟦𝑐⟧

for all (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎 ′

1
⟧V∼⟦𝑐⟧.

Using Monadic Bind (Lemma D.18), we have the following cases:

• Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝑉1, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑉2) ∈ E∼

𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

This follows by anti-reduction and our assumption on 𝑉1 and 𝑉2.

• Let 𝜀@𝑐𝑖 { 𝑑𝑖 ∈ 𝜎1 be an effect caught by ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑙𝑖⟧)𝑘 , and

let (𝐸𝑙 , 𝐸𝑟) ∈ (▶K∼⟦𝑑𝑙𝑖⟧)𝑘 (E∼⟦𝜎 ′
1
⟧V∼⟦𝑐⟧). We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

We continue by cases on subtyping of effect precision derivations. We show only the case

𝑑 ′𝜎 is a concrete effect precision set 𝑑 ′𝑐 ; the other cases follow immediately or reduce to this

one.

By inversion, we have𝑑𝜎 is also a concrete effect precision set𝑑𝑐 where dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
and for all 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 , 𝜀 : 𝑐

′ { 𝑑 ′ ∈ 𝑑 ′𝑐 and 𝑐 ≤: 𝑐′ and 𝑑 ′ ≤: 𝑑 . By anti-reduction, it

suffices to show

(let 𝑥 = ⟨𝑑𝑙𝑖 ↞ 𝑑𝑟𝑖 ⟩raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙) in ⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [𝑥],
let 𝑥 = ⟨𝑑 ′𝑙𝑖 ↞ 𝑑 ′𝑟𝑖 ⟩raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟) in ⟨𝜎 ′

2

↢ 𝜎 ′
1
⟩𝐸𝑟 [𝑥])

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

By congruence for Let, it suffices to show (1)

70

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(⟨𝑑𝑙𝑖 ↞ 𝑑𝑟𝑖 ⟩raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙),
⟨𝑑 ′𝑙𝑖 ↞ 𝑑 ′𝑟𝑖 ⟩raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟))

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

and (2) for (𝑉1,𝑉2) ∈ ▶(V∼⟦𝑑𝑖⟧)𝑘 we have

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [𝑉1],
⟨𝜎 ′

2

↢ 𝜎 ′
1
⟩𝐸𝑟 [𝑉2])

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

To show (1), first note that by the induction hypothesis for value types,

(raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙), raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐′𝑖⟧,

and by the induction hypothesis for value types again, (1) follows. To show (2), note

that 𝐸𝑙 [𝑥𝑙] and 𝐸𝑟 [𝑥𝑟] are related by assumption on 𝐸𝑙 and 𝐸𝑟 . So we may apply the Löb

induction hypothesis to reach the desired conclusion.

(4) We again use Löb induction and monadic bind. In the related raises case of the bind lemma,

we let 𝜀@𝑐𝑖 { 𝑑𝑖 ∈ 𝜎2 be an effect caught by ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩•. We let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑙𝑖⟧)𝑘 ,

and let (𝐸𝑙 , 𝐸𝑟) ∈ (▶K∼⟦𝑑𝑙𝑖⟧)𝑘 (E∼⟦𝜎 ′
1
⟧V∼⟦𝑐⟧).

We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

If 𝜀 ∉ 𝜎1, then both sides step to ℧. Since ℧ is related to itself by ErrBot (Lemma D.47), we

are finished by anti-reduction.

Otherwise, the proof proceeds analogously to that of the previous case, with upcasts and

downcasts interchanged.

□

Lemma D.62 (effect casts commute with pure function values). Let 𝐸 be an evaluation

context such that (1) for all 𝜎 , Σ | Γ | • : (𝜎 !𝐴) ⊢𝜎 𝐸 : 𝐵, and such that (2) 𝐸#𝜖 for all 𝜖 ∈ Σ.
Furthermore, suppose that (3) for all values 𝑉 , there exists a value 𝑉 ′

such that 𝐸 [𝑉] ↦→∗ 𝑉 ′
.

Let Σ | Γ⊑ ⊨𝜎2 𝑀 ≡ 𝑁 : 𝐴.

Then Σ | Γ⊑ ⊨𝜎1 𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑀] ≡ ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑁] : 𝐵, and likewise for upcasts.

Proof. We show the statement for downcasts only; the proof for upcasts is similar. Additionally,

we show only one of the directions of the equivalence; the other is symmetric.

We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑀], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑁]) ∈ E∼
𝑗 ⟦𝜎1⟧V∼⟦𝐵⟧.

We apply monadic bind (Lemma D.18) with 𝐸1 = 𝐸 [⟨𝜎1 ↞ 𝜎2⟩•] and 𝐸2 = ⟨𝜎1 ↞ 𝜎2⟩𝐸. By
assumption on𝑀 and 𝑁 , will suffice to consider the following cases.

71

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑉1], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

By the operational semantics, we have 𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑉1] ↦→1 𝐸 [𝑉1].
By anti-reduction, it suffices to show

(𝐸 [𝑉1], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

Furthermore, there exist 𝑖1 and 𝑖2 and values𝑉
′
1
and𝑉 ′

2
such that 𝐸 [𝑉1] ↦→𝑖1 𝑉 ′

1
and 𝐸 [𝑉2] ↦→𝑖2

𝑉 ′
2
.

We also have ⟨𝜎1 ↞ 𝜎2⟩𝑉 ′
2
↦→1 𝑉 ′

2
.

Putting the above facts together, by anti-reduction, it suffices to show

(𝑉 ′
1
,𝑉 ′

2
) ∈ E∼

𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

But by forward reduction, it suffices to show that (𝐸 [𝑉1], 𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

For this, it suffices (by the congruence lemmas) that 𝑉1 and 𝑉2 are related, which is true by

assumption.

• Let 𝑘 ≤ 𝑗 and let 𝜖@𝑐𝑟 { 𝑑𝑟 ∈ 𝜎2 be an effect caught by ⟨𝜎1 ↞ 𝜎2⟩•. Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜖, 𝐸𝑟#𝜖

be as in the statement of Lemma D.18. We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝐸𝑙 [raise 𝜖 (𝑉 𝑙)]], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝐸𝑟 [raise 𝜖 (𝑉 𝑟)]]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

If 𝜖 ∉ 𝜎1, then, by the operational semantics, both terms will step to ℧. By anti-reduction, it

suffices to show that (℧,℧) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧. This follows by ErrBot (Lemma D.47).

Now suppose 𝜖@𝑐𝑙 { 𝑑𝑙 ∈ 𝜎1. According to the operational semantics, we have

𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝐸𝑙 [raise 𝜖@𝑐𝑟 { 𝑑𝑟 (𝑉 𝑙)]] ↦→1 𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙)]],

and

⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝐸𝑟 [raise 𝜖@𝑐𝑟 { 𝑑𝑟 (𝑉 𝑟)]] ↦→1 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟)]] .

Thus, by anti-reduction, it suffices to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙)]],
𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟)]])

∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙

steps, and similarly let 𝑉 ′𝑟
be the value to which

⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟
steps. By anti-reduction, it suffices to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (𝑉 ′𝑙)]],
𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜖@𝑐𝑙 { 𝑑𝑙 (𝑉 ′𝑟)]])

∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

72

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

As neither term steps, it is sufficient to show that they are related in R∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧. We

assert the second disjunct in the definition of R∼⟦·⟧, taking 𝐸𝑙 = 𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩•]] and
𝐸𝑟 = 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩•]].
We first need to show that (𝑉 ′𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐⟧)𝑘 . By forward reduction, it suffices to show

that

(⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙 , ⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟) ∈ (▶E∼⟦𝜎1⟧)𝑘 (V∼⟦𝑐𝑟⟧).
By monotonicity of casts (lemma D.65), it suffices to show (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶E∼⟦𝜎1⟧)𝑘 (V∼⟦𝑐𝑟⟧).
This follows from our assumption about 𝑉 𝑙

and 𝑉 𝑟
.

We now need to show that

(𝑥𝑙 .𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑥𝑙]], 𝑥𝑟 .𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑥𝑟]]) ∈ (▶K∼⟦𝑑⟧)𝑘 (E∼⟦𝜎1⟧V∼⟦𝐵⟧) .
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉1,𝑉2) ∈ (▶V∼

) ⟦𝑑
𝑙⟧𝑘 ′ . We need to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1]], 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2]]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
It will suffice by the soundness of the congruence rules to show that

(𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1], 𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧).
Let 𝑉 ′

1
and 𝑉 ′

2
be the values to which ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1 and ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2 step, respectively. By

anti-reduction, it suffices to show

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′

2
]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .

By assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉 ′
1
,𝑉 ′

2
) ∈ (▶V∼⟦𝑑𝑟⟧)𝑘 ′ . By forward

reduction, it suffices to show

(⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1, ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
By monotonicity of casts (lemma D.65), it suffices to show

(𝑉1,𝑉2) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
This follows from our assumption on 𝑉1 and 𝑉2.

□

Corollary D.63 (commutativity of casts). Value casts commute with effect casts.

Proof. This follows from D.62, because ⟨𝐵 ↢ 𝐴⟩• and ⟨𝐴 ↞ 𝐵⟩• satisfy the requirements in

the lemma. □

Lemma D.64 (functoriality of casts). Let 𝑀 be a term such that Σ | Γ | · ⊢𝜎 𝑀 : 𝐴. Let

𝑐 : 𝐴 ⊑ 𝐵 and 𝑒 : 𝐵 ⊑ 𝐶 . Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and let 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Suppose Σ | Γ⊑ ⊨𝜎 𝑀 ≡ 𝑁 : 𝐴. Then the following hold:

Identity properties: Suppose Σ | Γ⊑ ⊨𝜎 𝑀 ⊒⊑ 𝑁 : 𝐴. We have

(1) Σ | Γ ⊨𝜎 ⟨𝐴 ↢ 𝐴⟩𝑀 ≡ 𝑁 : 𝐴

(2) Σ | Γ ⊨𝜎 ⟨𝐴 ↞ 𝐴⟩𝑀 ≡ 𝑁 : 𝐴

(3) Σ | Γ ⊨𝜎 ⟨𝜎 ↢ 𝜎⟩𝑀 ≡ 𝑁 : 𝐴

(4) Σ | Γ ⊨𝜎 ⟨𝜎 ↞ 𝜎⟩𝑀 ≡ 𝑁 : 𝐴

Composition properties: Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑒 : 𝐵 ⊑ 𝐶 . Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

. Suppose

𝑀 ⊒⊑ 𝑁 . Then

73

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(1) Σ | Γ ⊨𝜎 ⟨𝐶 ↢ 𝐴⟩𝑀 ⊒⊑ ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐶

(2) Σ | Γ ⊨𝜎 ⟨𝐴 ↞ 𝐶⟩𝑀 ⊒⊑ ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↞ 𝐶⟩𝑁 : 𝐴

(3) Σ | Γ ⊨𝜎 ′′ ⟨𝜎 ′′ ↢ 𝜎⟩𝑀 ⊒⊑ ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁 : 𝐴

(4) Σ | Γ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′′⟩𝑀 ⊒⊑ ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 : 𝐴

Proof. We prove more general, “pointwise" versions of the above statements. For instance, we

show that if (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, then (⟨𝐴 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.
Additionally, we only prove one direction of each of the equivalences (i.e., ⊑); the proof of the

other direction is symmetric.

The statements are proven simultaneously by induction on 𝐴 and 𝜎 .

• Identity properties:

(1) We need to show (⟨𝐴 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. By monadic bind (Lemma D.18),

with 𝐸1 = ⟨𝐴 ↢ 𝐴⟩• and 𝐸2 = •, it will suffice to show the following: Let 𝑘 ≤ 𝑗 and

(𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We will show

(⟨𝐴 ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

We continue by induction on 𝐴. If 𝐴 = bool, then we need to show

(⟨bool↢ bool⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which follows from our

assumption on (𝑉1,𝑉2).
If 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 , we need to show

(⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧.

As both terms are values, it suffices to show they are related inV∼
𝑘
⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. So, let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐴𝑖⟧. We need to show

((⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,𝑉2𝑉
𝑟) ∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
By anti-reduction, it suffices to show

(⟨𝐴𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐴 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙),𝑉2𝑉 𝑟) ∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
By the induction hypothesis (applied twice), it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙),𝑉2𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By the soudness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴𝑖 →𝜎𝐴

𝐴𝑜⟧ and (⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former is true by assumption and

downward closure (𝑘 ′ ≤ 𝑘). The latter is true by inductive hypothesis, since 𝑉 𝑙
and 𝑉 𝑟

are

related.

(2) This is dual to the above.

(3) We prove this statement by Löb induction (Lemma D.16). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have (⟨𝜎 ↢ 𝜎⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧). Let (𝑀, 𝑁) ∈
E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show (⟨𝜎 ↢ 𝜎⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. By monadic bind

(Lemma D.18), with 𝐸1 = ⟨𝜎 ↢ 𝜎⟩• and 𝐸2 = •, it will suffice to consider the following

cases.

74

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

– Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(⟨𝜎 ↢ 𝜎⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝑐⟧.

Per the operational semantics, we have ⟨𝜎 ↢ 𝜎⟩𝑉1 ↦→1 𝑉1, so by anti-reduction it suffices

to show (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧, which follows by the assumption that (𝑉1,𝑉2) ∈

V∼
𝑘
⟦𝐴⟧.

– Let 𝑘 ≤ 𝑗 and let 𝜖@𝑐𝜖 { 𝑑𝜖 be an effect caught by ⟨𝜎 ↢ 𝜎⟩• – i.e., 𝜖@𝑐𝜖 { 𝑑𝜖 ∈ 𝜎 .

Note that, as 𝜎 is a reflexivity derivation, 𝑐𝜖 and 𝑑𝜖 are also reflexivity derivations, i.e.,

𝑐𝑙𝜖 = 𝑐𝑟𝜖 and likewise for 𝑑𝜖 . For simplicity, let 𝐶 = 𝑐𝑙𝜖 and 𝐷 = 𝑑𝑙𝜖 .

Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜖, 𝐸𝑟#𝜖 be as in the statement of Lemma D.18. We need to show

(⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

According to the operational semantics, we have

⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑙)] ↦→1

let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise (𝜖@𝐶 { 𝐷) (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]
So, by anti-reduction it suffices to show that

(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise (𝜖@𝐶 { 𝐷) (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let𝑉 ′𝑙
be the term to which ⟨𝐶 ↢ 𝐶⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show that

(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise (𝜖@𝐶 { 𝐷) (𝑉 ′𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

The above terms do not step, so it suffices to show that they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

To this end, we will first show that (𝑉 ′𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . By forward reduction, it

suffices to show that (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙 ,𝑉 𝑟) ∈ (▶E∼⟦V∼⟦𝐶⟧⟧)𝑘 . By the induction hypothesis,
it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧) (𝑘).
Now we will show that

(𝑥𝑙 .(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩𝑥𝑙 in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝑥𝑟 .𝐸𝑟 [𝑥𝑟])
∈ (▶K∼⟦𝐷⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐴⟧).

Let 𝑘 ′ ≤ 𝑘 and let (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ . We need to show

((let 𝑥 = ⟨𝐷 ↞ 𝐷⟩𝑉1 in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧).

Let 𝑉 ′
1
be the value to which ⟨𝐷 ↞ 𝐷⟩𝑉1 steps. By anti-reduction, it suffices to show

75

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

((let 𝑥 = 𝑉 ′
1
in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧),
and then since the let term steps, it suffices by anti-reduction again to show

(⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧),

By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧)

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show

(𝑉 ′
1
,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

By forward reduction, it suffices to show

(⟨𝐷 ↞ 𝐷⟩𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

By the induction hypothesis for value types, it suffices to show

(𝑉1,𝑉2) ∈ (▶E∼⟦𝐴⟧)𝑘 ′ .

This follows by assumption.

(4) We again use Löb induction and monadic bind.

That is, assume for all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have (⟨𝜎 ↞ 𝜎⟩𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧). We need to show

(⟨𝜎 ↞ 𝜎⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧

where (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We again use monadic bind, and as in the previous proof,

the case of related values follows trivially since effect casts are the identity on values. Thus,

it will suffice to show the related raises case. That is, let 𝑘 ≤ 𝑗 and let 𝜀@𝑐𝜀 { 𝑑𝜀 be

an effect caught by ⟨𝜎 ↞ 𝜎⟩• – i.e., 𝜀@𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 . As in the previous proof, since 𝜎

is a reflexivity derivation, 𝑐𝜀 and 𝑑𝜀 are also reflexivity derivations, so for simplicity, let

𝐶 = 𝑐𝑙𝜀 = 𝑐𝑟𝜀 and 𝐷 = 𝑑𝑙𝜀 = 𝑑𝑟𝜀 .

Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜖, 𝐸𝑟#𝜖 be as in the statement of the monadic bind lemma. We need to show

(⟨𝜎 ↞ 𝜎⟩𝐸𝑙 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Note that, since 𝜀 ∈ 𝜎 , the downcast cannot fail.

The remainder of the proof proceeds exactly like the previous proof, with upcasts and

downcasts interchanged.

• Composition properties:

(1) We need to show (⟨𝐶 ↢ 𝐴⟩𝑀, ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐶⟧.

By monadic bind (Lemma D.18) with 𝐸1 = ⟨𝐶 ↢ 𝐴⟩• and 𝐸2 = ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩•, it will
suffice to show the following: Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝐴⟧. We will show

(⟨𝐶 ↢ 𝐴⟩𝑉1, ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐶⟧.

If 𝑐 ◦ 𝑒 = bool, then 𝑐 = 𝑒 = bool, and we need to show

76

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show (𝑉1,𝑉2) ∈ V∼
𝑗 ⟦bool⟧, which follows from our as-

sumption.

Now suppose 𝑐 ◦ 𝑒 = (𝑐𝑖 ◦ 𝑒𝑖) →(𝑐𝜎◦𝑒𝜎) (𝑐𝑜 ◦ 𝑒𝑜). We need to show

(⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,
⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐶𝑖 →𝜎𝐶 𝐶𝑜⟧.

Both terms are values, so it suffices to show that they are related inV∼
𝑘
⟦𝐶𝑖 →𝜎𝐶 𝐶𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐶𝑖⟧. We need to show that

((⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

(⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By anti-reduction, it suffices to show

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2) ⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

Let 𝑉 ′𝑟
be the value to which ⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By anti-reduction again, it suffices to show

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

We will appeal to transitivity (Lemma D.66). We continue by cases on ∼.
– First suppose ∼=<. We first claim that

77

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By the induction hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
By soundness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼

𝑘 ′⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧
and that

(⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧.

The former holds by assumption and downward closure. To show the latter, it suffices by

forward reduction to show that

(⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧.

Now, by the induction hypothesis, it suffices to show that

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐶𝑖⟧,

which follows from our assumption.

Now by transitivity, it will suffice to show

(⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E⪰
𝜔⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By reflexivity (CorollaryD.30), we have that ⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞
𝐵𝑖⟩𝑉 ′𝑟) is related to itself. Then by commutativity of casts (Corollary D.63), we can in-

terchange the order of ⟨𝐵𝑜 ↢ 𝐴𝑜⟩ and ⟨𝜎𝐶 ↢ 𝜎𝐵⟩, and the resulting terms are related.

Finally by monotonicity of casts (Lemma D.65), we can apply ⟨𝐶𝑜
↢ 𝐵𝑜⟩, and the

resulting terms are still related. Moreover, all of these relations hold “at 𝜔”.

– Now suppose ∼=>. By similar reasoning as in the previous case, we have

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙)))

∈ E∼
𝜔⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

78

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

Thus, by transitivity it will suffice to show

(⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙)),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E⪰
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

The reasoning is analogous to that of the previous case.

(2) This is dual to the above.

(3) We prove this statement by Löb induction (Lemma D.16). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have

(⟨𝜎 ′′ ↢ 𝜎⟩𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁) ∈ (▶E∼⟦𝜎 ′′⟧) 𝑗 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show

(⟨𝜎 ′′ ↢ 𝜎⟩𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁) ∈ E∼
𝑗 ⟦𝜎 ′′⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.18), with 𝐸1 = ⟨𝜎 ′′ ↢ 𝜎⟩• and 𝐸2 = ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩•, it
suffices to consider the follwing cases:

– Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(⟨𝜎 ′′ ↢ 𝜎⟩𝑉1, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑉2) ∈ E∼
𝑗 ⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Since the effect cast is the identity on values, the above follows immediately by anti-

reduction.

– Let 𝑘 ≤ 𝑗 and let 𝜀@𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 be an effect caught by either 𝐸1 or 𝐸2. Note that, as 𝜎 is

a reflexivity derivation, 𝑐𝜀 and 𝑑𝜀 are also reflexivity derivations, i.e., 𝑐𝑙𝜀 = 𝑐𝑟𝜀 and likewise

for 𝑑𝜀 . For simplicity, let 𝐶𝐿 = 𝑐𝑙𝜀 and 𝐷
𝐿 = 𝑑𝑙𝜀 .

Let𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜀, 𝐸𝑟#𝜀 be as in the statement of the monadic bind lemma. We need to show

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [raise (𝜀@𝐶𝐿 { 𝐷𝐿) (𝑉 𝑙)],
⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [raise (𝜀@𝐶𝐿 { 𝐷𝐿) (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝐶𝑀
and 𝐷𝑀

be the types such that 𝜖@𝐶𝑀 { 𝐷𝑀 ∈ 𝜎 ′
Let 𝐶𝑅

and 𝐷𝑅
be the types

such that 𝜖@𝐶𝑅 { 𝐷𝑅 ∈ 𝜎 ′′
. By anti-reduction, it suffices to show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩raise (𝜖@𝐶𝑀 { 𝐷𝑀) (⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙

steps, say in 𝑖 steps. Let 𝑉 ′𝑟
be the value to

which ⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟
steps, say in 𝑗 steps.

By anti-reduction, it suffices to show

79

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩raise (𝜖@𝐶𝑀 { 𝐷𝑀) (𝑉 ′𝑟) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Now (taking 𝐸′ = let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩ • in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥] in the EffUpCast rule), it

will suffice by anti-reduction to show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩𝑉 ′𝑟) in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝑉 ′′𝑟
be the value to which ⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩𝑉 ′𝑟

steps. By anti-reduction, it suffices to

show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩raise (𝜖@𝐶𝑅 { 𝐷𝑅) (𝑉 ′′𝑟) in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

As neither term steps, we will show that they belong to R∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧. We first need

to show that

(𝑉 ′𝑙 ,𝑉 ′′𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 .

By forward-reduction, it suffices to show that

(⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙 , ⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 .

By the induction hypothesis for value types, it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 ,
which is true by assumption.

Now we need to show that, for all 𝑘 ′ ≤ 𝑘 and related values (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ , we

have

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩𝑉1 in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2 in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

Let𝑉 ′
1
and𝑉 ′

2
be the values to which ⟨𝐷𝐿

↞ 𝐷𝑅⟩𝑉1 and ⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2 step, respectively.

By anti-reduction, it will suffice to show

80

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑉 ′

2
in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

Let 𝑉 ′′
2
be the value to which ⟨𝐷𝐿

↞ 𝐷𝑀 ⟩𝑉 ′
2
steps. By anti-reduction, it will suffice to

show

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑉 ′′
2
]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧).
Now by the Löb induction hypothesis, it suffices to show

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′′

2
]) ∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧).

By assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show

(𝑉 ′
1
,𝑉 ′′

2
) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

Now by forward reduction it suffices to show

(⟨𝐷𝐿
↞ 𝐷𝑅⟩𝑉1, ⟨𝐷𝐿

↞ 𝐷𝑀 ⟩⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2) ∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

This follows by the inductive hypothesis for value types and our assumption on 𝑉1 and

𝑉2.

(4) This is dual to the above: we use Löb induction and monadic bind, and we reach a point

where we need to show

(⟨𝜎 ↞ 𝜎 ′′⟩𝐸𝑙 [raise (𝜀@𝐶𝑅 { 𝐷𝑅) (𝑉 𝑙)],
⟨𝜎 ′
↞ 𝜎 ′′⟩⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [raise (𝜀@𝐶𝑅 { 𝐷𝑅) (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

where 𝜀@𝐶𝑅 { 𝐷𝑅 ∈ 𝜎 ′′
.

If 𝜀 ∉ 𝜎 , then the left-hand side steps to ℧, as does the right-hand side. By ErrBot (Lemma

D.47), ℧ is related to itself, so by anti-reduction, we are finished. If 𝜀 ∉ 𝜎 ′
, then in fact,

𝜀 ∉ 𝜎 (since 𝜎 ⊑ 𝜎 ′
), and so again, both sides step to ℧.

Otherwise, we proceed as in the proof of the previous case, with the upcasts and downcasts

interchanged.

□

Lemma D.65 (monotonicity of casts). Let 𝑐 : 𝐴 ⊑ 𝐵, and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
, and let𝑀 and 𝑁 be terms

such that Σ | Γ⊑ ⊨𝜎 𝑀 ⊑ 𝑁 : 𝐴. The following hold:

(1) Σ | Γ⊑ ⊨𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵

(2) Σ | Γ⊑ ⊨𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴

(3) Σ | Γ⊑ ⊨𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ ⟨𝜎 ′ ↢ 𝜎⟩𝑁 : 𝐴

(4) Σ | Γ⊑ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝑀 ⊑ ⟨𝜎 ↞ 𝜎 ′⟩𝑁 : 𝐴

81

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

Proof. As in the proof of the functoriality properties of casts, we prove stronger, “pointwise”

versions of the above statements, i.e., we assume (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, and show, for example,

that (⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

The proof is by induction on 𝑐 and 𝑑𝜎 .

(1) We need to show

(⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By monadic bind (Lemma D.18), with 𝐸1 = 𝐸2 = ⟨𝐵 ↢ 𝐴⟩•, it will suffice to show that

(⟨𝐵 ↢ 𝐴⟩𝑉1, ⟨𝐵 ↢ 𝐴⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧,

where 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧.

If 𝑐 = bool, then we need to show

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show that (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which follows from

our assumption.

If 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 , then we need to show

(⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1, ⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐵𝑖 →𝜎𝐵 𝐵𝑜⟧.

As both terms are values, it suffices to show that they are related in V∼
𝑘
⟦𝐵𝑖 →𝜎𝐵 𝐵𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ K∼
𝑘 ′⟦𝐵𝑖⟧. We need to show

((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

(⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐵𝑜⟧.

By anti-reduction, it suffices to show

(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙),
⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐵𝑜⟧.

By the inductive hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By soundness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧ and

that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧. The former is true by our assumption

about 𝑉1 and 𝑉2. To show the latter, it suffices by the inductive hypothesis to show that

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐵𝑖⟧, which follows by our assumption.

(2) This is dual to the above.

(3) This is dual to the below, and in fact easier since these are upcasts.

82

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

(4) We prove this statement by Löb induction (Lemma D.16). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎 ′⟧) 𝑗 (V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, ⟨𝜎 ↞ 𝜎 ′⟩𝑁) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎 ′⟧V∼⟦𝐴⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, ⟨𝜎 ↞ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.18), it will suffice to consider the following two cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩𝑉1, ⟨𝜎 ↞ 𝜎 ′⟩𝑉2) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

Since the effect cast is the identity on values, the above follows immediately by anti-

reduction.

• Let 𝑘 ≤ 𝑗 and let 𝜖@𝑐𝜖 { 𝑑𝜖 ∈ 𝜎 ′
be an effect caught by ⟨𝜎 ↞ 𝜎 ′⟩•. Recalling that 𝜎 ′

is

shorthand for the reflexivity derivation 𝜎 ′ ⊑ 𝜎 ′
, we have that 𝑐𝜖 and 𝑑𝜖 are themselves

reflexivity (type precision) derivations; for brevity, we refer to the types as 𝐶 and 𝐷 .

Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 and and let 𝐸𝑙#𝜖, 𝐸𝑟#𝜖 be such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝐷⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐴⟧) .
We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑙)],
⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [raise 𝜖@𝐶 { 𝐷 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

First, if 𝜖 ∉ 𝜎 , then both sides step to ℧, and we are finished by anti-reduction since ℧ is

related to itself by ErrBot (Lemma D.47).

Otherwise, by anti-reduction, it suffices to show

(let 𝑥 = ⟨𝐷 ↢ 𝐷⟩raise 𝜖@𝐶 { 𝐷 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [𝑥],
let 𝑥 = ⟨𝐷 ↢ 𝐷⟩raise 𝜖@𝐶 { 𝐷 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑟) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [𝑥])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).
By the soundness of the term precision congruence rule for let, it suffices to show that (1)

(⟨𝐷 ↢ 𝐷⟩raise 𝜖@𝐶 { 𝐷 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑙),
⟨𝐷 ↢ 𝐷⟩raise 𝜖@𝐶 { 𝐷 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑟))

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).

and (2) for all related (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [𝑉1], ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [𝑉2])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

□

83

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

D.1.5 Transitivity. We introduce the following notation. We define (𝑀1, 𝑀2) ∈ 𝑅𝜔 to mean that

(𝑀1, 𝑀2) ∈ 𝑅𝑘 for all natural numbers 𝑘 .

We now state and prove a “mixed transitivity” lemma, in which we allow one of the two relations

in the assumption to occur at a “proper" precision derivation, while the other is constrained to

occur at a reflexivity derivation.

Lemma D.66 (mixed transitivity, terms). If (1) (𝑀1, 𝑀2) ∈ E⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧ and (2) (𝑀2, 𝑀3) ∈

E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, then (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Similarly, if (𝑀1, 𝑀2) ∈ E⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑀2, 𝑀3) ∈ E⪯

𝜔⟦𝜎⟧V⪯⟦𝐴⟧, then (𝑀1, 𝑀3) ∈
E⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧.

Proof. This is proved simultaneuously with the following two lemmas on transitivity for results

and values. We prove the lemma for ∼=>; the other case is similar.

The proof is by Löb-induction (Lemma D.16). That is, assume that for all 𝑀 ′
1
, 𝑀 ′

2
, and 𝑀 ′

3
,

if (𝑀 ′
1
, 𝑀 ′

2
) ∈ (▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧) and (𝑀 ′

2
, 𝑀 ′

3
) ∈ (▶E⪰⟦𝑑𝜎⟧) 𝑗 (V⪰⟦𝑐⟧), then (𝑀 ′

1
, 𝑀 ′

3
) ∈

(▶E⪰⟦𝑑𝜎⟧) 𝑗 (V⪰⟦𝑐⟧).
We proceed by considering cases on the assumption that (𝑀2, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

In the first case,𝑀3 ↦→𝑗+1
. Then we immediately have that (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, via the

first disjunct.

In the second case, there is 𝑘 ≤ 𝑗 such that𝑀3 ↦→𝑗−𝑘 ℧ and𝑀2 ↦→𝑠 ℧, for some number of steps

𝑠 . By assumption (1), we have that (𝑀1, 𝑀2) ∈ E⪰
𝑠 ⟦𝜎⟧V⪰⟦𝐴⟧. By inversion, we see that the second

disjunct must have been true (with 𝑘 = 0). This means in particular that𝑀1 ↦→∗ ℧. Thus, we may

conclude using the second disjunct that (𝑀1, 𝑀3) ∈ E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

In the third case, there is 𝑘 ≤ 𝑗 and 𝑁3 such that𝑀3 ↦→𝑗−𝑘 𝑁3, and𝑀2 ↦→𝑠 ℧, for some number

of steps 𝑠 . By similar reasoning to the previous case, we may conclude using the third disjunct that

(𝑀1, 𝑀3) ∈ E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Finally, in the fourth case, there exist 𝑘 ≤ 𝑗 and (𝑁2, 𝑁3) ∈ R⪰
𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧ such that𝑀2 ↦→𝑠 𝑁2

for some 𝑠 , and𝑀3 ↦→𝑗−𝑘 𝑁3. By assumption (1), we have that (𝑀1, 𝑀2) ∈ E⪰
𝑠+𝑖⟦𝜎⟧V⪰⟦𝐴⟧ for all

𝑖 ∈ N. By inversion, we see that either the third or the fourth disjunct was true, with 𝑘 = 𝑖 in both

cases (notice that (𝑠 + 𝑖) − 𝑖 = 𝑠 , which is precisely the number of steps that𝑀2 takes to 𝑁2).

In the former case, we have𝑀1 ↦→∗ ℧ and we can then finish by asserting the third disjunct. In the

latter case, there exists 𝑁1 such that𝑀1 ↦→∗ 𝑁1 and (𝑁1, 𝑁2) ∈ R⪰
𝑖
⟦𝜎⟧V⪰⟦𝐴⟧. Since 𝑖 is arbitrary,

this tells us that (𝑁1, 𝑁2) ∈ R⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧. To recap, we have (𝑁1, 𝑁2) ∈ R⪰

𝜔⟦𝜎⟧V⪰⟦𝐴⟧, and
(𝑁2, 𝑁3) ∈ R⪰

𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, for some 𝑘 ≤ 𝑗 . We want to show that (𝑁1, 𝑁3) ∈ R⪰

𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

This follows from Lemma D.68.

□

Lemma D.67 (mixed transitivity, values). If (𝑉1,𝑉2) ∈ V⪰
𝜔 ⟦𝐴⟧ and (𝑉2,𝑉3) ∈ V⪰

𝑗
⟦𝑐⟧, then

(𝑉1,𝑉3)V⪰
𝑗
⟦𝑐⟧.

Similarly, if (𝑉1,𝑉2) ∈ V⪯
𝑗
⟦𝑐⟧ and (𝑉2,𝑉3) ∈ V⪯

𝜔 ⟦𝐴⟧, then (𝑉1,𝑉3)V⪯
𝑗
⟦𝑐⟧.

Proof. Proved simultaneously with the homogeneous transitivity for terms (Lemma D.66) and

for results (Lemma D.68). The proof is by induction on the type precision derivation 𝑐 . We prove

the first statement only; the other is proved similarly.

• Case 𝑐 = bool. Then we have 𝑉1 = 𝑉2 = 𝑉3 and either all are true, or all are false. In either

case, 𝑉1 is related to 𝑉3.

• Case 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . Then 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 and 𝐵 = 𝐵𝑖 →𝜎𝐵 𝐵𝑜 .

We have (𝑉1,𝑉2) ∈ V∼
𝜔 ⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧ and (𝑉2,𝑉3) ∈ V∼

𝑘
⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧.

84

Gradual Typing for Effect Handlers Woodstock ’18, June 03–05, 2018, Woodstock, NY

We need to show

(𝑉1,𝑉3) ∈ V⪰
𝑗 ⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧.

Let 𝑘 ≤ 𝑗 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V⪰
𝑘
⟦𝑐𝑖⟧. We need to show that

(𝑉1𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧.

By reflexivity (D.30), we know that (𝑉 𝑙 ,𝑉 𝑙) ∈ V⪰
𝜔 ⟦𝐴𝑖⟧.

From our assumption about (𝑉1,𝑉2), it follows that

(𝑉1𝑉 𝑙 ,𝑉2𝑉
𝑙) ∈ E⪰

𝜔⟦𝜎𝐴⟧V⪰⟦𝐴𝑜⟧.
From our assumption about (𝑉2,𝑉3), we have

(𝑉2𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧.

Now we apply the induction hypothesis (Lemma D.66) to conclude that

(𝑉1𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧,

as needed.

□

Lemma D.68 (mixed transitivity, results). If (1) (𝑁1, 𝑁2) ∈ R⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧ and (2) (𝑁2, 𝑁3) ∈

R⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, then (𝑁1, 𝑁3) ∈ R⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Similarly, if (𝑁1, 𝑁2) ∈ R⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑁2, 𝑁3) ∈ R⪯

𝜔⟦𝜎⟧V⪯⟦𝐴⟧, then (𝑁1, 𝑁3) ∈ R⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧.

Proof. We prove only the first statement; the second is analogous.

Let 𝑗 be fixed. We consider cases on assumption (1). There are two subcases to consider. First,

𝑁1 and 𝑁2 are values and (𝑁1, 𝑁2) ∈ V⪰
𝜔 ⟦𝐴⟧. Then 𝑁3 is also a value, and (𝑁2, 𝑁3) ∈ V⪰

𝑗
⟦𝑐⟧. By

D.67, we have that (𝑁1, 𝑁3) ∈ V⪰
𝑗
⟦𝐴⟧.

Otherwise, there exist 𝜖@𝐶 { 𝐷 ∈ 𝜎 , 𝐸1#𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and 𝐸2#𝜖 , and 𝑉1 and 𝑉2 such that (𝑉1,𝑉2) ∈
(▶V⪰⟦𝐶⟧)𝜔 , and (𝑥1.𝐸1 [𝑥1], 𝑥2.𝐸2 [𝑥2]) ∈ (▶K⪰⟦𝐷⟧)𝜔 (E⪰⟦𝜎⟧V⪰⟦𝐴⟧), and

𝑁1 = 𝐸1 [raise 𝜖 (𝑉1)],
and

𝑁2 = 𝐸2 [raise 𝜖 (𝑉2)] .
Similarly, since 𝑁2 and 𝑁3 are related in R⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, it follows that 𝜖@𝑐𝜖 { 𝑑𝜖 ∈ 𝑑𝜎 ,

where 𝑐𝜖 : 𝐶 ⊑ 𝐶′
and 𝑑𝜖 : 𝐷 ⊑ 𝐷 ′

. We also know that there exist 𝐸3#𝜖 and 𝑉3 such that

(𝑉2,𝑉3) ∈ (▶V⪰⟦𝑐𝜖⟧) 𝑗 , and (𝑥2.𝐸2 [𝑥2], 𝑥3 .𝐸3 [𝑥3]) ∈ (▶K⪰⟦𝑑𝜖⟧) 𝑗 (E⪰⟦𝑑𝜎⟧V⪰⟦𝑐⟧), and

𝑁3 = 𝐸3 [raise 𝜖 (𝑉3)] .
Recall that we need to show

(𝐸1 [raise 𝜖 (𝑉1)], 𝐸3 [raise 𝜖 (𝑉3)]) ∈ R⪰
𝑗 ⟦𝑑𝜎⟧V

⪰⟦𝑐⟧.
We assert the second disjunct in the definition of R⪰⟦·⟧.
We first claim that (𝑉1,𝑉3) ∈ (▶V⪰⟦𝑐𝜖⟧) 𝑗 . By transitivity for values (Lemma D.67), it suffices to

show that (𝑉1,𝑉2) ∈ (▶V⪰⟦𝑐𝜖⟧)𝜔 and (𝑉2,𝑉3) ∈ (▶V⪰⟦𝑐𝜖⟧) 𝑗 . These follow by assumption.

Now we claim that

85

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max S. New, Eric Giovannini, and Daniel R. Licata

(𝑥1 .𝐸1 [𝑥1], 𝑥3.𝐸3 [𝑥3]) ∈ (▶K⪰⟦𝑑𝜖⟧) 𝑗 (E⪰⟦𝑑𝜎⟧V⪰⟦𝑐⟧).
Let 𝑘 ≤ 𝑗 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V⪰⟦𝑑𝜖⟧)𝑘 . We need to show

(𝐸1 [𝑉 𝑙], 𝐸3 [𝑉 𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧) .
By the induction hypothesis (recall we are proving this simultaneously with transitivity for

terms, which is being proven by Löb induction), it suffices to find a term𝑀 such that (𝐸1 [𝑉 𝑙], 𝑀) ∈
(▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧), and (𝑀, 𝐸3 [𝑉𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧).
By reflexivity (Corollary D.30), we have (𝑉 𝑙 ,𝑉 𝑙) ∈ (▶V∼⟦⟧)𝜔 .
Then by our assumption on (𝐸1, 𝐸2), we have

(𝐸1 [𝑉 𝑙], 𝐸2 [𝑉 𝑙]) ∈ (▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧)
By our assumption on (𝐸2, 𝐸3) we have

(𝐸2 [𝑉 𝑙], 𝐸3 [𝑉 𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧),
which finishes the proof. □

Lemma D.69 (heterogeneous transitivity). Let 𝑐 : 𝐴1 ⊑ 𝐴2 and 𝑒 : 𝐴2 ⊑ 𝐴3. Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

and let 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′
.

If (1) (𝑀1, 𝑀2) ∈ E⪰
𝜔⟦𝑑𝜎⟧V⪰⟦𝑐⟧ and (2) (𝑀2, 𝑀3) ∈ E⪰

𝑗
⟦𝑑 ′𝜎⟧V⪰⟦𝑒⟧, then (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎 ◦

𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧.
Similarly, if (𝑀1, 𝑀2) ∈ E⪯

𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑀2, 𝑀3) ∈ E⪯

𝜔⟦𝑑 ′𝜎⟧V⪯⟦𝑒⟧, then (𝑀1, 𝑀3) ∈
E⪯
𝑗
⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪯⟦𝑐 ◦ 𝑒⟧.

Proof. Follows from mixed transitivity (Lemma D.66) and the generalized cast lemmas (Lemmas

D.50, D.51, D.52, D.53, D.54, D.55, D.56, and D.57).

For example, by EffDnR and ValDnR, we have

(𝑀1, ⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴1 ↞ 𝐴2⟩𝑀2) ∈ E⪰
𝜔⟦𝜎⟧V⪰⟦𝐴1⟧,

and by EffDnL and ValDnL, we have

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴1 ↞ 𝐴2⟩𝑀2, 𝑀3) ∈ E⪰
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧.

Then applying mixed transitivity, we have

(𝑀1, 𝑀3) ∈ E⪰
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧,

as desired.

□

86

	Abstract
	1 Introduction
	1.1 Nominal vs Structural Effects

	2 Overview of GrEff
	3 Surface and Core Greff
	3.1 Syntax and Typing of Core GrEff
	3.2 Syntax and Elaboration of GrEff

	4 Axiomatic and Operational Semantics
	4.1 Axiomatic Semantics
	4.2 Operational Semantics
	4.3 Subtyping, Gradual Subtyping and Coercions

	5 Soundness and Graduality
	5.1 Static and Dynamic Gradual Guarantees
	5.2 Logical Relation
	5.3 Proof of Graduality

	6 Discussion
	References
	A Syntax and Elaboration
	B (In)Equational Theory
	C Operational Semantics
	C.1 Operational Semantics from First Principles

	D Elaboration
	D.1 Graduality

