
Relative Monads in Call-by-push-value as an
Abstraction of Stack-based Effects

(Extended Abstract)

Max S. New
Computer Science and Engineering

University of Michigan
Ann Arbor, Michigan, USA

maxsnew@umich.edu

Abstract
We propose the use of relative monads in a Call-by-push-
value calculus as a useful abstraction for stack-based effect
implementations.

1 Introduction
Since Moggi’s seminal work [Moggi 1991], monads have
become a wildly successful tool in two main areas. First, as
Moggi originally showed, denotational models of functional
languages with effects are naturally modeled using monads.
Second, monads have become an indispensable programming
abstraction for effects in functional languages, most notably
in Haskell [Peyton Jones and Wadler 1993].
While monads have been very successful in modeling

high-level, especially user-defined, effects, they have not
seen as much use in the practice of low-level effect imple-
mentation in compilers, which involve invariants on the use
of registers and the stack that are not naturally modeled
in the usual semantics of an effect as a strong monad. The
most successful applications rely on converting the monads
to continuation-passing style and applying the usual CPS
compilation techniques.
We propose a simple model for stack-based effect imple-

mentations as (strong) relative monads in a call-by-push-
value calculus. These are sufficiently close conceptually to
ordinary strong monads that much of the intuitions around
monads still apply, but incorporate a distinction between the
linearly used runtime stack first class values. The foundation
for this insight is given by the call-by-push-value calculus,
which itself is based on a refinement of Moggi’s analysis of
effects in terms of monads.

2 Stack structure via Computation Types
First, we introduce our metalanguage: Levy’s Call-by-push-
value (CBPV) calculus extended with recursive types and

Author’s address: Max S. New, Computer Science and Engineering, Univer-
sity of Michigan, Ann Arbor, Michigan, USA, maxsnew@umich.edu.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

polymorphism[Levy 2001]. CBPV is based on a fundamen-
tal distinction between value types which describe sets of
first-class values and computation types which describe the
possible behaviors of computations that interact with the
environment. The type structure of this calculus is given in
Figure 1. The value types are written as𝐴 and should mostly
be familiar: nullary and binary tuples along with nullary
and binary sum types. The last, 𝑈𝐵 is the type of thUnks
of computations of type 𝐵. Computation types 𝐵 are more
interesting. In order to describe behaviors that interact with
the environment, computation types must also describe the
expectations on the structure of the external environment.
Most importantly for this work, the computation types can
be interpreted as defining expectations on the structure of a
runtime stack. For instance, the CBPV function type 𝐴 → 𝐵

describes computations that pop an 𝐴 value off of the stack
and proceed to behave as 𝐵. In terms of the stack structure,
this requires the stack to consist of an 𝐴 value pushed onto
a 𝐵 stack. The lazy product 𝐵1 &𝐵2 describes a computa-
tion that, depending on the external environment, either
behaves as a 𝐵1 or as a 𝐵2. This requires the stack to consist
of a bit to indicate which behavior is desired, paired with
an appropriate stack for either 𝐵1 or 𝐵2.

1 We also include
a type of coinductively defined computations 𝜈𝑌 .𝐵 which
have inductive expectations on the stack, and polymorphic
computations ∀𝑌 .𝐵 that have a similar interpretation to func-
tion types. Finally, we have the 𝐹𝐴 type which is the type
of programs that perform effects and (possibly) return val-
ues of type 𝐴. In terms of the stack, this requires that the
stack provide a continuation for𝐴 values as well as whatever
other features are needed to allow the allowed effects of the
language such as exceptions or state.
Levy’s CBPV calculus can be viewed as a refinement of

Moggi’s monadic metalanguage. Moggi’s metalanguage has a
single sort of types with a type𝑇𝐴 representing the “effectful
computations” that return 𝐴 values. This intuitively is very
similar to the 𝐹 type, but the crucial difference is that terms
of type 𝑇𝐴 are first class data that can be passed around. In

1The duality between computation types and stacks is an instance of cat-
egorical/linear logic duality, see Møgelberg and Staton [2014] for more
details

1

https://doi.org/

Conference’17, July 2017, Washington, DC, USA Max S. New

Value types 𝐴 ::= 𝑈𝐵 | 1 |𝐴 ×𝐴 | 0 |𝐴 +𝐴

Computation types 𝐵 ::= 𝑌 | 𝐹𝐴 |𝐴 → 𝐵 | 𝜈𝑌 .𝐵
| ∀𝑌 .𝐵 | ⊤ | 𝐵&𝐵

Figure 1. Extended CBPV Types

CBPV, these two aspects of the monad 𝑇 are decomposed
into a type of effectful behaviors 𝐹 and a type of first class
closures𝑈 . These constructors can be combined to construct
a strong monad on the category of value types 𝑈𝐹𝐴. In
category-theoretic terms, the constructors 𝐹 and 𝑈 are a
strong adjunction and every adjunction induces a monad2.

3 Relative Monads for Stack-based Effects
CBPV generalizes Moggi’s metalanguage to give a calculus
for programming with an abstract effect, but we can also use
CBPV as a metalanguage for describing concrete effects, just
as in Haskell, users can describe concrete effects using the
Monad typeclass, which abstracts over the structure of the
type 𝑇 in Moggi’s metalanguage. To formalize the structure
of stack-based effect implementations in CBPV, we should
instead abstract over the structure of the type 𝐹 in CBPV.
A natural way to do this is to axiomatize the structure of
a monad relative to 𝐹 , using the concept of relative monad
developed in Altenkirch et al. [2010]. Relative monads are not
endofunctors, in this case a monad relative to 𝐹 is given by a
type constructor Eff𝐴 that takes value types to computation
types, like 𝐹 , along with some term constructors analogous
to Haskell’s monad typeclass. This can be described in several
ways, the simplest of which can be described by the following
pseudo-code for a CBPV typeclass3:
class RMonad (Eff : v -> c) where

return : a -> Eff a
bind : U(Eff a) -> U(a -> Eff a') -> Eff a'

subject to monad laws analogous to the ordinary laws, as
well as a constraint that bind is linear in its input in the
sense of Munch-Maccagnoni [2014].

The intuition for this type is slightly different than a typi-
cal monad. We think of the type Eff𝐴 as the type of computa-
tions that return𝐴 values, and therefore also the expectations
on the stack for such computations. Then return sayswe can
return an 𝐴 value to an Eff stack, and bind says that we can
extend a stack for Eff𝐴′ computations with a continuation
𝑈 (𝐴 → Eff𝐴′) to construct a stack for Eff𝐴 computations to
interact with.

3.1 Example: Three Exception Monads
We end with a concrete example of how CBPV relative mon-
ads can be used to describe stack-based implementations of
effects more faithfully than ordinary monads. In Figure 2
2as well as a comonad
3alternative formulations make the role of the 𝐹 type much clearer

Exn0𝐸𝐴 = 𝐹 (𝐸 +𝐴)
Exn1𝐸𝐴 = ∀𝑌 .𝑈 (𝐴 → 𝑌) → 𝑈 (𝐸 → 𝑌) → 𝑌

Exn2𝐸𝐴 = (𝐹 (𝐴 + 𝐸)) &(∀𝑋 .𝑈 (𝐴 → Exn2𝐸𝑋) → Exn2𝐸𝑋)

Figure 2. Three Relative Exception Monads

we present three relative exception monads. The first is sim-
ply the ordinary exception monad implementation using
sums extended to be a relative monad. This representation is
known to introduce unnecessary runtime overhead because
the continuation for the exception must inspect a sum value
and branch based on its structure.
The second representation is a relative variant of the

“double-barrel continuation” monad [Thielecke 2001]. This
representation is a variant of CPS conversion where both
“success” and “fail” continuations are provided. This elim-
inates the indirection overhead of the first representation
because the monadic computation directly jumps to the ap-
propriate continuation rather than constructing a value of a
sum type. This type is simply a Church-encoding of the first,
and it can be shown using dinaturality or parametricity to
be equivalent to the first[Mogelberg and Simpson 2007].
The third representation is a stack-walking implementa-

tions of exceptions4. Stack-walking implementations opti-
mize for the scenario where exceptions are rare. The double-
barrel representation is not ideal for this scenario since each
bind requires pushing an additional continuation handler
onto the stack. In the stack-walking implementation, the
computation is a &, offering a choice to the environment:
either the environment provides a continuation for an ordi-
nary exception monad, or it provides a continuation for the
𝐴 values only in addition to the rest of the stack. This means
that when raising an exception, the stack might have an
arbitrary number of value continuations before providing an
exception handler. The code for raising an exception must
then be a recursive function that must walk up the stack
until it finds an exception handler. Note that the type Exn2
is slightly too large, in order to be equivalent to the previous
two, we should restrict to a subset of behaviors that return
the same 𝐴 value no matter which choice is provided by the
context.

4 Future Work
Relative version of other typical monads, such as reader,
writer, state, continuations and free monads can all be for-
mulated in CBPV. An optimizing implementation of CBPV
would allow us to implement these and evaluate the effect
on performance.

4Note that this definition is a coinductive definition that needs higher order
𝜈

2

Relative Monads in Call-by-push-value as an Abstraction of Stack-based Effects Conference’17, July 2017, Washington, DC, USA

While CBPV allows us to model stack manipulation using
computation types, it also suffers from being “too high level”
in a few ways. For instance, the double-barreled continua-
tion monad uses two closures, but in a real implementation,
the captured variables of these two continuations can be
shared and stored on the stack. Then instead of two clo-
sures, we could have simply two code pointers. This would
require a lower-level version of CBPV that has a distinction
between closures and more low level code pointers that can-
not capture free variables. Additionally, runtime systems
often reserve certain registers for their effect implementa-
tions. CBPV only models the structure of the stack explicitly,
but possibly an extension can model global registers as well,
for instance implementing a form of relative state monad
where the value is updated in place in a register.

References
Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. 2010. Mon-

ads Need Not Be Endofunctors. In Foundations of Software Science and
Computational Structures. 297–311.

Paul Blain Levy. 2001. Call-by-Push-Value. Ph. D. Dissertation. Queen Mary,
University of London, London, UK.

Rasmus Ejlers Mogelberg and Alex Simpson. 2007. Relational Parametricity
for Computational Effects. In 22nd Annual IEEE Symposium on Logic in
Computer Science (LICS 2007). 346–355. https://doi.org/10.1109/LICS.
2007.40

Eugenio Moggi. 1991. Notions of computation and monads. Inform. And
Computation 93, 1 (1991).

Guillaume Munch-Maccagnoni. 2014. Models of a Non-associative Com-
position. In Foundations of Software Science and Computation Structures,
Anca Muscholl (Ed.). 396–410.

Rasmus Ejlers Møgelberg and Sam Staton. 2014. Linear usage of state.
Logical Methods in Computer Science Volume 10, Issue 1 (March 2014).
https://doi.org/10.2168/LMCS-10(1:17)2014

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional
Programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (Charleston, South Car-
olina, USA) (POPL ’93). Association for Computing Machinery, 71–84.
https://doi.org/10.1145/158511.158524

Hayo Thielecke. 2001. Comparing Control Constructs by Double-barrelled
CPS Transforms. Electronic Notes in Theoretical Computer Science 45
(2001), 433–447. https://doi.org/10.1016/S1571-0661(04)80974-5 MFPS
2001,Seventeenth Conference on the Mathematical Foundations of Pro-
gramming Semantics.

3

https://doi.org/10.1109/LICS.2007.40
https://doi.org/10.1109/LICS.2007.40
https://doi.org/10.2168/LMCS-10(1:17)2014
https://doi.org/10.1145/158511.158524
https://doi.org/10.1016/S1571-0661(04)80974-5

	Abstract
	1 Introduction
	2 Stack structure via Computation Types
	3 Relative Monads for Stack-based Effects
	3.1 Example: Three Exception Monads

	4 Future Work
	References

